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1 Executive summary 
 
The preprocessing of data is a crucial step in the remote sensing analytical workflow, and is often the most time 
consuming and costly. Examples of preprocessing tasks include geometrically correcting imagery to improve the 
positional accuracy, Lidar point cloud processing, spectral and spatial preprocessing are the main modules 
described in this deliverable. 
 
In this document each modules present a short description and references to the methodology followed, the 
flowchart of the module specifying inputs/outputs need it. Also relevant results are presented to illustrate the 
module output. 
 
Earth Observation data plays a major role in ECOPOTENTIAL, however filling the gaps, generated by the existence 
of clouds, rain, or simply due to incomplete track coverage of upper atmospheric layers, is one of the most 
common problems, faced during the processing of satellite data. Many methods have been tested out over the 
years for solving this problem, with different results, regarding the field of application and the expertise of the 
scientists involved. The approach tested and presented here is the Data Interpolating Empirical Orthogonal 
Functions (DINEOF) method. 
 
One of the main goals of the ECOPOTENTIAL project is a better use of existing and incoming Earth Observation 
and field monitoring data, complemented by appropriate interpretation tools, data services and ecosystem 
models able to use these data. Today's data comes from multiple sources, which makes it difficult to link, match, 
cleanse and transform data across systems. However, it’s necessary to connect, find relationships and fusion 
data for a better understanding of the phenomena. Therefore this document describe a number of non-
probabilistic data fusion methods, integration of in-situ data, integration of expert knowledge, integration of 
multisensory radiometry and a useful module to downscale waves. 
 
Copernicus is a European system for monitoring the Earth and consists of a complex set of systems which collect 
data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and 
sea-borne sensors. ECOPOTENTIAL aims to benefit from this the services provide by Copernicus. Last section of 
this document describes different methods and techniques for assimilating data from INSPIRE spatial datasets 
and Copernicus core services/products such as integration of High Resolution Layers (HRL) of Copernicus Land 
Monitoring Services with Corine Land Cover (CLC) and national data sets and Copernicus Marine Environment 
Monitoring Service (CMEMS) products analysis for assessing marine food provision ecosystem services. 
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1.1 Abbreviation and acronyms  

 

ASAR Advanced Synthetic Aperture Radar (ASAR) 

CCI Climate Change Iniziative 

Chl-a Chlorophyll - a 

CLC Corine Land Cover  

CMEMS Copernicus Marine Environment Monitoring Service 

DO Dissolved oxygen  

DOW Downscale Ocean Waves 

DTM Digital terrain Model 

EMODnet European Marine Observation and Data Network 

ENVISAT European Space Agency Environmental Satellite 

EO Earth Observation 

EODESM EO Data for Ecosystem Monitoring  

EUNIS European Nature Information System  

EV Essential Variable 

FWHM Full-Width-Half-Maximum 

GEOWOW GEOSS Interoperability for Weather, Ocean and Water 

GOW Global Ocean Waves 

HRL High resolution layers 

INSPIRE Infrastructure for Spatial Information in Europe  

IPR Intellectual Property Right  

LiDAR Light Detection And Ranging 

LSMA Linear Spectral Mixing Analysis 

MDA Maximum-dissimilarity algorithm  

MIVIS Multispectral infrared and Visible Imaging Spectrometer 

MLLH Maximum Likelihood Algorithm  

PCA Principal Component Analysis 

RBF Radial basis functions  

RS Remote Sensing 

SAR Synthetic Aperture Radar 

SST Sea Surface Temperature 

SWAN Simulating Waves Nearshore 

VLP Virtual Laboratory Platform 

XRD X-Ray Diffraction 

 

  

https://books.google.it/books?id=uli3BgAAQBAJ&pg=PA379&lpg=PA379&dq=XRD+carbone+et+al+2011&source=bl&ots=A1wUENCHU4&sig=hCJL-EaSO_M98vSEpQsxrknPriM&hl=it&sa=X&ved=0ahUKEwj1gsXg_eDNAhVJVhQKHUQOADEQ6AEIIjAA
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1.2 Modules and tools attribution  

 

Modules and Tools Authors 

Spatial preprocessing tools: clipping, mosaicking, georeferencing and projection 
change 

CREAF-UAB 

Radiometric correction tool CREAF-UAB 

Lidar point cloud processing CESBIO 

Speckle suppression fusing Sentinel 2-A RGB Optical data CERTH 

Image Time Series –Data Mining System  DLR 

Gap Filling: Data Interpolating Empirical Orthogonal Functions  Deltares 

Non probabilistic Fusion techniques Deltares 

Integration of in-situ data in Linear Spectral Mixing Analysis (LSMA) for the 
onshore coastal sediment characterization 

ISPRA 

Integration of expert knowledge, satellite multispectral and in-situ radiometry 
to map habitat types 

ISPRA 

LiDAR bathymetry integration with multisensory radiometry for seabed 
mapping in shallow waters 

ISPRA 

Maximum-dissimilarity algorithm (MDA) as fusion module to downscale waves 
on shallow waters from SAR wind fields, modeled wind and waves fields 

ISPRA 

Integration of High Resolution Layers (HRL) of Copernicus Land Monitoring 
Services with Corine Land Cover (CLC) and national data sets 

ISPRA 

Copernicus Marine Environment Monitoring Service (CMEMS) products analysis 
for assessing marine food provision ecosystem service ecopotential 

ISPRA 
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2 Introduction  
Considering the project aims of addressing the data-to-information-to-decision-making process for ecosystem 
services and the subsequent objectives (i.e. making extensive use of Earth Observation data in combination with 
in situ monitoring; creating an Ecosystem Data Service related to the Copernicus space component – 
ECOPERNICUS-, providing a significant contribution to the research requirement for the Copernicus operational 
services and allowing simplified access to EO data and products and to ecosystem models outputs), this 
deliverable contributes – along with  tasks 4.2, 4.3, 4.4 and 4.5 - to the achievement of the WP4 goal of designing 
and developing an EO Data for Ecosystem Monitoring (EODESM) that generates products, organizes and shares 
data for selected Protected Areas, models, and ecosystem and ecosystems services assessments. 
To achieve this goal EO data preprocessing, integration and fusion tools/modules provided by involved partners 
were collected, in the view of providing comprehensive multi-source, multi-scale and multi-temporal EO 
products (services) for ecosystem monitoring to be distributed as an ECOPERNICUS service (WP10). 

2.1 The overall framework that the preprocessing and fusion modules and 
tools will feed 

 EODESM (EO Data for Ecosystem Monitoring) (Figure 1): a pre-operational multi-modular system that 
performs actions at Level 1, 2, 3 and 4 to quantify EBVs and other EV. EODESM tools/modules will: 
- use both pre-existing and new techniques;  
- be mainly focus on new EO services for ecosystem mapping/monitoring (retrieval bio-geophysical 

variables: terrestrial, marine and coastal; retrieval of land cover/use, ecosystem and habitats 
mapping), but will include also EO data pre-processing and integration modules; 

- be based on open source software and will represent a significant advancement of the state of the 
art. 

 

 Sandbox (Figure 2): will enable access to EO data and products from existing archives, providing 
processing tools based on previous experience in GEOWOW (Developer Cloud Sandbox) for WP4 to 
achieve a comprehensive multisource, multi-scale and multi-temporal EO set for ecosystem monitoring. 
After testing and validation it will offer some EODESM modules developed in WP4 as processing services 
to WP10.  
 

 Virtual Laboratory Platform (VLP) (Figure 3): VLP will build on the services published by ECOPERNICUS as 
well as others implemented via EODESM, providing in turn the virtual service platform for managing 
interdisciplinary research and applications.. Users will interact with the platform through a set of 
resource sharing services including: web-based data services, open archives, scientific models accessible 
as web services, semantic assets, and analytics services. The accessible resources are both provided by 
the project partners, in particular through the work carried out in WP3, WP4, WP5 and WP6 (such as 
models developed in WP6, or analytics services developed and made accessible by WP3), and external 
resources considered relevant for the ECOPOTENTIAL community. The platform provides four main 
service layers to empower the virtual laboratory capabilities: 

- discovery, access, and harmonized use of open EO and in-situ monitoring data, metadata, scientific 
models and results, semantic engines, and analytics’ provision  

- discovery, access, and use of ecosystems modelling, including ecosystem services, upscaling and 
future protected areas  

- discovery, access, and use of the necessary knowledge to analyse ecosystems services as well as to 
obtain climate and land-use change scenarios, upscaling to larger areas and definition of the 
requirements of future protected areas  

- provision of specific applications and portal for different users. 
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 ECOPERNICUS (Figure 4): project activities will contribute to Copernicus and non-Copernicus contexts for 
ecosystems, and will create an Ecosystem Data Service for Copernicus (ECOPERNICUS), a new open-
access, smart and user-friendly geospatial data and EO products retrieval portal and web coverage 
service using a dedicated online server.  

 

 

Figure 1 - EO Data for Ecosystem Monitoring 

 
Figure 2.Scheme of the Sandbox approach for services 

prototyping and processing services for EO data 

  
Figure 3. VLP/VRP as described in WP4-WP5 f2f meeting in Barcelona (April 2016) 
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Figure 4. Example of the components of an Ecopernicus service for the assessment of ecosystem services 
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3 About the modules 

3.1 Disclaimer 

This deliverable is a collection of EO data integration tools and fusion modules in the form of workflows with the 
related description. 
 
Each partner decided autonomously which tools and modules release to this deliverable and the degree of detail 
of each workflows description.  
 
With regard to issues related to responsibility of the uses inconsistent with those stated in the project, each of 
contributing partner provided the module with the associated user license. 

3.2 Restriction 

By default, there will be no restriction on the use of the modules, unless explicitly stated otherwise by the 
partners. 

3.3 Location  

The latest working version of the modules will be uploaded to the following repository, unless the general 
ECOPOTENTIAL sharing policy change. 
 
https://github.com/ec-ecopotential  

 

3.4 Acknowledgements 

 
We request that end users who make use of EO data pre-processing and fusion modules for deriving value added 
products, in written or oral presentations to add acknowledgment words of the use of EO data pre-processing 
and fusion modules therefore ECOPOTENTIAL project 
 

https://github.com/ec-ecopotential
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4 Preprocessing modules 
Remote sensing images acquisition entails several disturbing factors due to different factors. From the sensor 
characteristics, atmosphere, weather, etc. to Earth surface geometry. Therefore a preparatory phase to improve 
image quality as a basis for further analysis is a must on the remote sensing processing chain. In this section, a 
set of preprocessing modules that are useful on the context of remote sensing data needed in the project will be 
presented. Modules are differenced among spatial preprocessing and spectral preprocessing. In the last part of 
the section, LiDAR point cloud processing and Speckle suppression fusing Sentinel 2-A RGB Optical data and gap 
filling will be discussed.  

4.1 Spatial Preprocessing (CREAF-UAB) 

In this section, we will explain spatial pre-processing techniques related to spatial data management which 
improves the positional accuracy and resolution, along with filtering techniques that serve to enhance or 
highlight the spatial characteristics of an image dataset. The topics are listed below. 
 

4.1.1 Layer clipping 

Remote sensing images from multiple sensors have different envelope and extension. It is thus sometimes 
necessary to extract a smaller defined area of the image. The module allows clipping by area defining X min X 
max Ymin and Ymax as an output enveloping coordinates, as well as using a vector mask, in which the external 
objects to the mask are eliminated. In this last case is also possible to indicate optionally a set of parameters 
defined by a selection. 
 
The module is provided as part of the MiraMon Remote Sensing and GIS software available to all ECOPOTENTIAL 
partners any time on demand. Information regarding the inputs, parameters and outputs of the module are 
provided in the relevant Help of the software. MiraMon supports several parameters on the command line and 
allows writing Batch files that can run combining several chained orders. Moreover, combining Web Processing 
Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and reproduce geospatial 
workflows described on the metadata, scaling them up to similar situations and executing them as remote 
processes. 
 

4.1.1.1 References  

[1] Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de 
Recerca Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 

 

4.1.2 Layer mosaicking 

Given a set of images that cover a determined region sometimes it is necessary to mosaic them in order to form 
a larger image. This module generates a resulting layer by combining the original ones. The program can 
automatically determine the geographical extent of the set of layers or user can specify a given extent. It is also 
possible to specify a clip region through a vector mask. In this case the program examines each file to be 
mosaicked and used the useful part for the specified region. When a file is completely outside the region it is not 
considered. In case of superposition of rasters, if the metadata of preexisting files indicate that they contain 
NODATA, this value is not written in the destination file. This allows images that contain areas outside the region 
to be overlaid correctly. In the same way, when overlaying consists of values that are not background, the 
program DOES NOT makes sure that they are equal: the values of the last file that affects the region will be the 
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ones used.  It is possible to specify the value of the NODATA of the output image. If it is not specified this will be 
the value of the NODATA of the first image. Original raster files must be coregistered.  
The module is provided as part of the MiraMon Remote Sensing and GIS software available to all ECOPOTENTIAL 
partners any time on demand. Information regarding the inputs, parameters and outputs of the module are 
provided in the relevant Help of the software. MiraMon supports several parameters on the command line and 
allows writing Batch files that can run combining several chained orders. Moreover, combining Web Processing 
Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and reproduce geospatial 
workflows described on the metadata, scaling them up to similar situations and executing them as remote 
processes. 
 
References  
[1] Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de 

Recerca Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 
 

4.1.3 Projecting Raster Data – Orthorectification (georeference) 

Remotely sensed images present a series of geometric distortions produced by the rotation and curvature of the 
Earth, the irregularities of platform’s orbit, etc. Moreover, sometimes datasets, although orthorectified, may also 
present undefined coordinate system. This module allows such images to be corrected to remove these 
distortions using conventional techniques based on first and second order polynomials. In case of remotely 
sensed images with a high level of detail or images of areas with a pronounced topography it is advisable to 
perform corrections taking into account the effect of the relief of the land surface. This module offers a specific 
method “polynomial” fit with heights” for satellite images with small pixels, such as Sentinel 2, Landsat, SPOT XS, 
etc. A set of ground control points which indicate a number of coordinate points in both the uncorrected original 
reference system and the final corrected reference system is needed. To increase the statistical reliability of the 
geometric correction process, the module allows two set of ground control points: one that is used to determine 
the transformation equations for the fit and the other, called test points, that is used to estimate the error of the 
fit based on an independent set of points. The criterion for deciding the output pixel value can be defined by 
user among the following three: nearest neighbor (will preserve the original radiometry), bilineal interpolation 
and bicubic interpolation. By orthorectifying an image, the distortions are geometrically removed, creating a 
planimetric image at every location with consistent scale across all parts of the image. 
 
The images that have been corrected using information about the relief contained in a Digital Elevation Model 
(DEM) are known as orthoimages.  
 
The module is provided as part of the MiraMon Remote Sensing and GIS software available to all ECOPOTENTIAL 
partners any time on demand. Information regarding the inputs, parameters and outputs of the module are 
provided in the relevant Help of the software. MiraMon supports several parameters on the command line and 
allows writing Batch files that can run combining several chained orders. Moreover, combining Web Processing 
Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and reproduce geospatial 
workflows described on the metadata, scaling them up to similar situations and executing them as remote 
processes. 
 

4.1.3.1 References  

[1] Palà, V. & Pons, X. (1995) "Incorporation of relief into geometric corrections based on polynomials" 
Photogrammetric Engineering & Remote Sensing, 61(7):935-944. 
 

[2] Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de 
Recerca Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 

http://www.creaf.uab.es/miramon
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4.1.4 Change Geographical reference system 

Users that wish to change the projection system of an image once it has been georeferenced (do not confuse 
with the functions of the orthorectification that allows non-georeferenced layers to be georeferenced) will have 
to apply a transformation from one system to another setting the new projection parameters. The module can 
use different criterion to decide the output pixel value once the projection is changed: nearest neighbor (will 
preserve the original radiometry), bilineal interpolation (recommended for Digital Elevation Models) and bicubic 
interpolation (return smoothed results).  
 
The module is provided as part of the MiraMon Remote Sensing and GIS software available to all ECOPOTENTIAL 
partners any time on demand. Information regarding the inputs, parameters and outputs of the module are 
provided in the relevant Help of the software. MiraMon supports several parameters on the command line and 
allows writing Batch files that can run combining several chained orders. Moreover, combining Web Processing 
Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and reproduce geospatial 
workflows described on the metadata, scaling them up to similar situations and executing them as remote 
processes. 
 

4.1.4.1 References 

[1] Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de 
Recerca Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 

 

4.2 Spectral Pre-processing (CREAF-UAB) 

4.2.1 Radiometric Correction  

Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to 
discriminate between product artefacts and real changes in Earth processes. Image data recorder by satellite 
sensors can contain errors or interpretation problems due to, among other factors, the relative brightness over 
a pixel in a given band according to the solar position and characteristics of slope and exposure, and different 
atmospheric conditions between dates. Atmospheric correction is therefore recommended, and is particularly 
important in those cases where information that is going to be extracted will be primarily based on the spectral 
properties of the data, and/or adjacent or overlapping to scenes acquired under differing conditions. For 
instance, accurately production of change detection or land cover maps over a large area using multiple Sentinel 
images.  
 
This module allows the radiometric correction (atmospheric and topographic corrections) of remote sensing 
images captured in the spectral regions visible and non-infrared. This correction allows expressing pixel values 
in reflectance units and reduces the number of undesired artifacts that are due to the effects of the atmosphere 
or to differential illumination which is, in turn, due to the time of the day, the location in the Earth and the relief 
(zones that are more illuminated than others, shadows, etc.). The radiometric correction model implemented in 
this module is based on two proposals by Pons et al. 1994 and Pons et al. 2014.  
The model of radiometric correction takes several factors, among others, into account: relief (incidence angles 
and projected shadows), solar position, Earth-Sun distance in the moment of image capture, the decrease in 
radiation in its way down and up because of the atmosphere, and standard parameters for each channel such as 
atmospheric optical density, exoatmospheric solar irradiance and sensor calibration. 
 

http://www.creaf.uab.es/miramon
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The topographic correction by default the module creates two temporary auxiliary images derived from the 
digital elevation model and the corresponding solar position at the moment of image acquisition with respect to 
surface slope, aspect and elevation: the first contains the cosine of the solar incidence angle for each pixel; the 
second contains for the solar azimuth with which the image was acquired, the solar heights causing shadows in 
each pixel.  
 
The module can apply atmospheric correction based on two different approaches. The first one takes into 
account the subtraction of the lowest radiometric values for each channel –dark object subtraction (manual 
correction given that Kl – lowest value- has to be visually identified). The second approach performs an automatic 
correction by fitting tau and La parameters through the known reflectance pseudoinvariant areas (PIA) obtained 
from other remote sensors or field radiometers. The optical depth is obtained from MODTRAN simulations. This 
method has two essential advantages. On one hand the method guarantees radiometric homogeneity in large 
time-series and in the other hand it allows homogenous corrections among series of different sensors, such as 
for example Landsat and Sentinel-2. 
 
Although both models work with incidence angles smaller than 90 degree, it is recommended and more realistic 
to assume that with angles that are close to this value the model cannot be assumed to be lambertian, being 
possible to indicate the angle from which the correction model will not be applied.  
Sensors which are currently supported are: Sentinel 2, MSS (Landsat 1 - 5), TM (Landsat 4, 5), ETM+ (Landsat 7) 
[high and low gain; NLAPS and LPGS], OLI TIRS combined (Landsat 8), OLI (Landsat 8), HRV (SPOT 1, 2, 5), HRG 
(SPOT 5), ASTER VIS-NIR (Terra), ASTER SWIR (Terra), HRCC [High Resolution CCD Camera] (CBERS-1, CBERS-2, 
CBERS-2B).  
 
The module is provided as part of the MiraMon Remote Sensing and GIS software available to all ECOPOTENTIAL 
partners any time on demand. Information regarding the inputs, parameters and outputs of the module are 
provided in the relevant Help of the software. MiraMon supports several parameters on the command line and 
allows writing Batch files that can run combining several chained orders. Moreover, combining Web Processing 
Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and reproduce geospatial 
workflows described on the metadata, scaling them up to similar situations and executing them as remote 
processes. 

4.2.1.1 References  

[1] Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de 
Recerca Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 
 

[2] Pons X, Pesquer L, Cristóbal J, González-Guerrero Ò (2014) "Automatic and improved radiometric correction 
of Landsat imagery using reference values from MODIS surface reflectance images." International Journal 
of Applied Earth Observation and Geoinformation, 33:243-254.  
 

[3] Pons X, Solé-Sugrañes L (1994) "A Simple Radiometric Correction Model to Improve Automatic Mapping of 
Vegetation from Multispectral Satellite Data." Remote Sensing of Environment, 48:191-204. 

 

4.3 Lidar point cloud processing (CESBIO) 

Lidar based retrieval of forest structural characteristics has become the method of choice over the past decade 
following the development of commercially viable airborne laser scanning (ALS) systems. Usually, ALS systems 
record echo pulses within small footprints (e.g., 15-30 cm) at average first-return pulse densities of 0.5 to 10 
(sometimes more) p m-2 depending on sensor, flight characteristics and requirements. Proprietary software (i.e., 
sensor dependent) is usually used to extract discrete returns from raw ALS data. These returns are combined 

http://www.creaf.uab.es/miramon
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with the navigation data to yield the geo-referenced point clouds provided by commercial operators. Accuracies 
of such procedures are of approximately 0.5 m horizontally and 0.15 m vertically, with higher accuracies within 
individual scans.  

4.3.1 Description of the module 

Subsequently, lidar-point-clouds are further processed by the beneficiary (user) through customized chains (Fig 
xy). For the purpose of Essential Variables generation over forested areas, the following steps were used within 
the ECOPOTENTIAL project. First, the data are examined for extent, point density, consistency, overlapping areas 
or gaps, and existing classification (if available) accuracy. Such issues are addressed in a second step by removing 
‘overlap’ (e.g. points from adjacent flight lines) and ‘noise’ point classes to avoid deriving skewed metrics  and 
speed up the classification process. In addition, the provided las tiles are checked for data gaps. Gap filling is 
achieved by merging data from adjacent flight lines (in overlapping areas) or from additional flight lines (if 
available). Open tools such as ‘las2las’ or ‘lasmerge’ from software suite Lastools are used to achieve such tasks. 
The next step is ground/non-ground classification, with all non-ground returns being considered vegetation in 
areas with no man-made features such as forests. Such classifications can be achieved with a range of algorithms 
(Montealegre et al. 2015). The open source Multiscale Curvature Classification (MCC) algorithm (Evans and 
Hudak 2007) was designed for forested environments on rough surfaces and was proved to produce the highest 
success rates at identifying ground and non-ground returns (Montealegre et al. 2015). Therefore, MCC algorithm 
is used to classify (or re-classify when the point cloud has been classified by the data provider) point cloud data. 
Depending on flight characteristics, ALS point densities and topography different scale and curvature parameters 
are used. Their values are determined for each PA by iterative tests starting from the default values.  
 
With ground point correctly classified a digital elevation model is interpolated and used to compute the height 
above ground (i.e. normalized height) for the remaining points. The normalized point cloud is used to produce 
generic Lidar-based metrics (canopy closure, canopy density, percentiles, etc.). Such Lidar metrics represent 
proxies of forest structural characteristics and can be used with parametric (e.g., linear regression) or non-
parametric (e.g., random forest, support vector machines) models to derive above ground forest biomass or 
other forest structural characteristics of interest. The Lidar metrics may be computed using Fusion and Fusion 
LTK (for large areas), open software developed and maintained by USDA Forest Service.  

4.3.2 Flow chart 

Once ALS–based layers (metrics) are generated post-processing tasks may include transformation to the desired 
file format (e.g. GeoTiff) and cartographic projection (e.g. UTM). For irregular (non-rectangular) ALS coverages 
one may need to subset the resulting raster files to eliminate areas interpolated over the missing tiles (Figure 6). 
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Figure 5 Typical flowchart for EV modelling from Lidar data (including ALS processing) 

 
Figure 6 ALS coverage for Sierra Nevada (red tiles) together with the generated canopy height model (green 
background) and the clipped (using the national park limits, in purple) final raster (light blue to dark brown shades 
within the park limits). 

4.3.3 References 

[1] Evans, J.S., & Hudak, A.T. (2007). A multiscale curvature algorithm for classifying discrete return LiDAR in 
forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45, 1029-1038 

[2] Montealegre, A.L., Lamelas, M.T., & Riva, J. (2015). Interpolation Routines Assessment in ALS-Derived Digital 
Elevation Models for Forestry Applications. Remote Sensing, 7, 8631-8654 

4.4  Pre-processing of SAR data (CERTH) 

Many studies based on SAR data for biophysical parameters retrieval have been carried out at various 
frequencies and incidence angles, based on electromagnetic modeling and/or experimental data. Radar systems 
are sensitive to biophysical parameters over time and are not affected by clouds. Therefore, more robust, 
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accurate and frequently updated environmental monitoring is expected from the joint use of both types of 
measurements. Data from various sensors are used in the frame of the Ecopotential project, with Sentinel-1 the 
main sensor. All the Sentinel-1 imagery as well as the the ESA SNAP tool are made available for free by ESA and. 
The main SAR pre-processing steps that can be carried out in the SNAP toolbox are defined below and 
summarized in Figure 7. 
 

 
Figure 7 Summary of the SAR processing module to be uploaded to GitHub. Note that the flowchart may vary slightly 
depending on the user needs. 

4.4.1 Calibration  

When dealing with Single Look Complex (SLC) data, the first step of the processing is importing each TOPS 
(Terrain Observation with Progressive Scanning) burst/sub-swath using the ancillary information provided by ESA 
(annotation, calibration and noise files) as well as the data stored in GeoTiff format. The result of this process 
are three complex TOPS sub-swathes. When reading in the Sentinel-1 TOPS burst SLC data, radiometric 
calibration is automatically applied by using the calibration and noise information from the ancillary files. Level-
1 Ground Range Detected (GRD) products consist of focused SAR that has been detected, multi-looked and 
projected to ground-range using an Earth ellipsoid model. The Sentinel-1 SLC or GRD data are calibrated using 
the following equation (S1 Report 2015): 

𝛾𝑜 =
𝐷𝑁2. 𝑡𝑎𝑛⁡(𝜃𝑖)

𝐴𝑑𝑛
2 . 𝐾

 

where DN stands for digital number,  θi is the local incidence angle, Adn the product final scaling from internal SLC 
to Level-1 GRD digital and K the calibration factor. Gamma nought is defined as the average radar cross section 
per unit area obtained by projecting the ground area into the plane perpendicular to the line of sight (Frey et al. 
2013). 
 
The SLC bursts in the TOPS mode data have to be mosaicked into a single SLC image. Data may be further multi-
looked to reduce the speckle noise effect and the size of the images (that is of interest when dealing with a 
consequent amount of data from the Sentinels), at the cost of a degradation of the spatial resolution.  
 

4.4.2 Co-registration 

Images acquired are co-registered in order to be stackable. The resulting stack of data may be used for multi-image 
processing such as temporal speckle filtering or InSAR coherence computation. The co-registration step is 
straightforward when images are orthorectified. If not, offsets with respect to a reference image are estimated 
for the remaining images using a cross-correlation algorithm, such as in Werner et al. 2005. The offsets are 
modeled using least-squares regression and a third degree polynomial function that is subsequently used to 
correct a lookup table used to co-register each image to the reference image. A fast way of estimating the offsets 
is to compute the cross-correlation by simply multiplying images in the Fourier domain. After co-registration, 
images are stacked and further processing may be carried out. 
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4.4.3 Topographic normalization 

Terrain correction should be applied to geocode the images by correcting SAR geometric distortions using a 
producing ground projected images. Geometric distorsions include foreshortening (slope appearing compressed 
in the SAR image because the radar beam reached the base of a tall feature tilted towards the radar before it 
reaches the top), layover (the top of a tall feature lays over the base of the feature because the radar beam 
reaches the top of the feature before the base), and shadow (the radar beam is not able to illumnate the ground 
surface). 
 

4.4.4 Speckle filtering 

Speckle noise is an inherent problem in coherent imaging systems such as SAR. It creates strong intensity 
fluctuations due to positive and negatives interferences and hampers the analysis of images and the estimation of 
local radiometry. SAR processing chains thus include speckle reduction, often at the cost of a resolution loss. 
Spatial filtering is commonly used, but the preservation of point-like and fine structures and textures requires to 
adapt locally the estimation. However, the use of multi-image filtering is increasing with the availability of a high 
number of Sentinel temporal images and is therefore entirely adapted to the use of Sentinel-1 images.  
 

4.4.4.1 Multi-image speckle filtering 

A multi-image filter may be used to reduce speckle while preserving spatial resolution and the fine texture 
present in the image after multi-looking. The filter exploits the signatures of a scatterer in multiple images and 
it can be referred to as multi-looking in the temporal domain (Quegan et al. 2001). The method available in the 
SNAP toolbox, developed by Bruniquel and Lopes (1997) and Quegan and Yu (2001), provides new images with 
reduced speckle effects from multi-temporal and multi-polarised images. It is based on the following relation: 
 

 
 
where Jk(x, y) is the radar intensity of the output image k at pixel (x, y), Ii(x, y) is the radar intensity of the input 
image i at pixel (x, y), <Ii(x, y)> is the local average intensity of the input image i at pixel (x, y) and N is the number 
of images. Because the operation consists of a pixel-to-pixel sum, the radiometric resolution is improved without 
damaging the spatial resolution. However, the images must be perfectly overlaid and all the statistical 
parameters well estimated. The resulting equivalent number of looks (ENL) is given by the following equation: 
 

𝐸𝑁𝐿 =
𝐿.𝑁.𝑊

𝑁 +𝑊 − 1
 

 
With L the initial number of looks and a fixed windiw size of W pixels. 
An example of pre-processed Sentinel-1 image (calibration, multilooking, terrain correction and multi-image 
filtering) is shown in Figure 8. 
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Figure 8 (Up) Very high resolution optical data from Google Earth and (Down) Pre-processed Sentinel-1 image over a 15 
x 30 km area centred on 25.05oS and 31.35oE, in the Kruger National Park protected area (Kruger borders in red), after 
calibration, multilooking, terrain correction and multi-image filtering. The multi-image filter has been performed using 
50 images: 25 dates (from 20 March 2015 to 7 April 2016) and 2 polarisations (VH and VV). 

4.4.4.2 Spatial speckle filtering 

Many approaches, relying on adaptive selection of pixels, has seen growing attention over the past years. Among 
the various methods that have been proposed to perform adaptive selection, the most used is the Lee filter (Lee 
et al. 1981) that locally select the best window among a few predefined windows (a rectangular window and eight 
edge-aligned oriented windows).  Vasile et al. (2006) proposed to use region growing to build an adapted 
neighborhood restricted to similar pixels only. Adjacent pixels are incrementally aggregated based on their 
intensity. This approach is therefore more flexible than the use of predefined windows and leads to better 
resolution preservation than the Lee filter. Other approached are based on the work of Buades et al. (2005) who 
proposed the nonlocal means method:  the relative importance of pixels can be weighted by comparing their 
surrounding neighborhoods rather than selecting pixels with similar intensities. 
 
A new speckle reduction fusing Sentinel-1 and 2 filter has been developed in the frame of Ecopotential and is 
described in the following section. 
The suppression of SAR image speckle noise is an important preprocessing step that favors the efficient 
exploitation of SAR data in a wide range of applications. This module aims to suppress speckle in theSAR Sentinel-
1A GRD product by using guided image filtering. The guided filter computes the filtered output by considering 
the content of a guidance image. Guided filter has good edge-preserving property meanwhile it suppresses 
speckle noise.  

4.4.4.2.1 Guided filter methodology 
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Guided filter involves an input image 𝐼, a guidance image 𝐽 and an output image 𝐼′(𝑝). The filtered output𝐼′(𝑝)at 
a pixel 𝑝 is expressed as a weighted average:  

𝑰′(𝒑) =∑𝑾(𝒑, 𝒒)𝑰(𝒑)

𝒒

 

Equation 1 
The filter weights 𝑊(𝑝, 𝑞) are given by: 

𝑊(𝑝, 𝑞) =
1

|𝑤𝑘|
2

∑ (1+ (⁡𝐽(𝑝) − 𝜇𝑘)
T(

(𝑝,𝑞)∈𝑤𝑘

Σ𝑘 + 𝜀𝑈)−1(⁡𝐽(𝑝) − 𝜇𝑘)), 

where|𝑤𝑘| is the total number of pixels in a support window 𝑤𝑘  centered at pixel 𝑘  and 𝜀  is a smoothness 
parameter. Σ𝑘 and 𝜇𝑘 are the covariance and the mean of pixel colors within 𝑤𝑘 A main advantage of the guided 
filter is that its computation cost is independent to the size of the selected support window, since Equation 1 can 
be expressed a linear transform as follows:  

𝐼′(𝑝) =
1

|𝑤𝑘|
∑ (𝑎𝑘 ⁡𝐽(𝑝) +

𝑝∈𝑤𝑘

𝑏𝑘) 

where: 

𝑎𝑘 = (𝛴𝑘 + 𝜀𝑈)−1(
1

|𝑤𝑘|
∑ 𝐽(𝑝)

𝑝∈𝑤𝑘

𝐼(𝑝) − 𝜇𝑘𝐼(̅𝑘)) 

𝑏𝑘 = 𝐼(̅𝑘) − 𝑎𝑘
T𝜇𝑘 

where𝐼(̅𝑘) is the mean of 𝐼 within 𝑤𝑘. Moreover, the time complexity of the guided filter is independent to the 
support window radius.   
In this module, the despeckling of SAR Sentinel-1A data is guided by the RGB bands of Sentinel-2. Therefore, the 
input image 𝐼 is the SAR Sentinel-1A data and the guidance image𝐽 is comprised of the RGB bands of Sentinel-2. 

4.4.4.2.2 Inputs, parameters and outputs 

The inputs to the module are a SAR Sentinel-1A image (with one or two polarization bands) and a Sentinel-2 RGB 
image (the inputs should have been acquired in a close date). Optionally, the user will be able to provide as input 
a cloud mask (corresponding to Sentinel-2) so that despeckling is not applied to the areas covered by clouds. In 
order to despeckle noise in SAR areas covered by clouds, the median filter is applied. In this way, despeckling is 
performed to all SAR regions independently to cloud coverage. Before running the module, the three inputs, 
provided in GeoTIFF format, are tested if they are projected to the same projection system and have the same 
resolution and extent. If the projection system and/or the resolution and/or the extent of the inputs are different, 
then the user is prompted to modify her/his input, prior applying the module. 
 
The parameters required in the guided image filter are the radius “R” of the support window 𝑤𝑘  (see the 
description of the guided filter methodology for the definition of 𝑤𝑘 ) and the smoothness parameter “eps” 
(which is denoted as𝜀in the description of the guided image methodology), which is the criterion of separating a 
“flat patch” from a “high variance patch”. The patches with variance smaller than “eps” are smoothed whereas 
those with variance larger than eps are preserved. Default parameters are defined as {R,eps}={3,0.01}. 
 
The output of the module is a raster of the despeckled SAR Sentinel-1A data at the same projection system, 
resolution and extent. The flowchart of the module is provided in Figure 9.  
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Figure 9. Flowchart of the module for Sentinel-1A SAR speckle suppression by fusing Sentinel 2-A RGB Optical data  

 

 
(a) 

 
(b) 

 
(c) 
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 (d) 

 
(e) 

Figure 10. Visual representation of: (a) SAR Sentinel 1 GRD VV Polarization before despeckling, (b) Sentinel 2 RGB bands 
used as guided image, (c) SAR Sentinel 1 GRD VV Polarization after despeckling, zoomed region of SAR data: (d)  before 
and (e) after despeckling. 

4.4.4.2.3 Experimental Results 

Experimental results show that the proposed method can effectively suppress speckle and keep the texture 
structure. In Figure 9, a visual example from the Doñana protected area is provided. More specifically, Figure 9, 
(a) shows the SAR Sentinel-1A GRD VV polarization data before despeckling (date   acquired 02/03/2016), Figure 
9, (b) shows the Sentinel-2 RGB bands provided as guided image in the module (date acquired 08/03/2016), 
Figure 2 (c) shows the SAR data after despeckling. The parameters used for the guided image filtering were the 
default ones. Figure 9 (d), (e), show zoomed SAR regions, before and after despeckling, for more detailed visual 
comparison. The visual comparison shows that speckle noise has been significantly reduced, while the details 
have been preserved. 
 
The results of this module are compared against the results of four despeckle filters, which are provided by the 
SNAP tool of ESA, namely: Lee [2], Median, Frost [3] and Boxcar (moving average) filters. The window size for the 
Lee, Median, Frost and Boxcar filters was set to 11. A quantitative and a visual comparison among the results are 
performed.  
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Figure 11.Four homogeneous areas inside Sentinel 2 RGB data. 

4.4.4.2.4 Quantitative comparison 

The equivalent number of looks (ENL), which is given by μ2/σ2 (μ and σ are the mean value and the standard 
deviation inside a SAR region, respectively) and is used to evaluate objectively the speckle reduction results [4]. 
The larger the ENL value, the better speckle noise has been suppressed. The ENL has been computed for four 
homogeneous regions inside Sentinel 2A RGB raster as visualized in Figure 11. 
 
The ENL results for thefour homogeneous regions, depicted in Figure 11, are provided in Table 4.1 Obviously, 
guided filter suppresses more efficiently speckle noise than the compared approaches, since it gives larger ENL 
for all four homogeneous areas. 
 

ENL 

 Area 1 Area 2 Area 3 Area 4 

Original SAR 1.1817 4.8157 3.8274 2.1446 

Provided module 2.1429 60.9861 22.3346 6.9751 

Lee 2.1429 56.5983 21.2264 6.4241 

Median 2.0127 50.0371 19.7083 5.8892 

Frost 1.9584 35.0789 15.2195 5.2231 

Moving Average 1.8497 19.8006 11.0249 4.3307 

Table 4.1 Methods performance comparison. 

4.4.4.2.5 Texture information preservation 

Following a visual comparison, Figure 12 shows zoomed despeckled SAR regions, which were generated by the 
compared despeckle approaches. , Figure 12 (a) maintains the edge details (e.g. efficiently despeckling while 
maintaining most possible texture information) in a higher or similar degree than , Figure 12 (b)-(e). Thus, by a 
first visual evaluation on an ECOPOTENTIAL PA, this module is able to preserve efficiently the SAR details. 
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Furthermore, in an effort to quantitatively evaluate the performance for ECOPOTENTIAL sites to preserve real 
texture information, Donana PA ground data were retrieved by visual interpretation of a validation dataset taken 
by the equivalent Sentinel-2 image. Preliminary results indicate an approximately 5-10% improvement in 
comparison to SNAP offered statistical approaches. CERTH wishes to work with real ground truth data in the 
imminent future to fine tune the quantification of the performance of the suggested module/ approach. 
 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

 
(e) 

Figure 12. Zoomed region in SAR data after despeckling with (a) the proposed module, (b) Lee, (c) Median, (d) Frost, (e) 
Boxcar 

 

4.4.4.2.6 Limitations of the module 

The performance of this module depends on the quality of the Sentinel-2 data. Therefore, Sentinel-2 data should 
have been corrected for atmospheric effects and exhibit low cloud coverage. Additionally, Sentinel-1A data and 
Sentinel-2 data should be geometrically and timely (as possible) aligned.  

4.4.4.2.7 Location to the module 

The module is provided in a dedicated CERTH repository till its final version has been translated to open source 
code. It is available to all ECOPOTENTIAL partners any time on demand. Information regarding the inputs, 
parameters and outputs of the module are provided in the relevant ReadMe.docx file. 

4.4.4.2.8 Disclaimer 
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The initial version of the module has been uploaded to CERTH repository and it is available to all ECOPOTENTIAL 
partners. The next step is to implement it in an open source code and upload it to GitHub to be broadly available.  
 

4.4.5 Ortho-rectification 

The final SAR pre-processing step is ortho-rectification to the desired coordinate system (e.g. Universal 
Transverse Mercator - UTM) using a lookup table based on digital elevation model (DEM) and the orbital 
information of the SAR data. To correct for possible inaccuracies in the input data, a refinement of the lookup 
table is applied in form of offsets between the reference SAR image (i.e. the first image of the data series) and a 
DEM-based simulated SAR image transformed to the radar geometry (Wegmüller et al. 2002). 
 

4.4.6 References  

[1] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Proc. ECCV, pp. 1–14, 2010. 
[2] J. S. Lee, “Speckle analysis and smoothing of synthentic aperture radar images,” Comput. Graph. Image 

Process., vol. 17, no. 1, pp. 24–32, 1981. 
[3] V. S. Frost and J. A. Stiles, “A model for radar images and its application to adaptive digital filtering of 

multiplicative noise,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 4, no. 2, pp. 157–166, 1982. 
[4] F. Argenti, A. Lapini, L. Alparone, and T. Bianchi, “A tutorial on speckle reduction in synthetic aperture radar 

images,” IEEE Geosci. Remote Sens.Mag., vol. 1, no. 3, pp. 6–35, 2013. 
[5] Bruniquel, J., & Lopes, A. (1997). Multi-variate optimal speckle reduction in SAR imagery. International 

journal of remote sensing, 18(3), 603-627. 
[6] Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and 

Remote Sensing, 39(11), 2373-2379. 
[7] Vasile, G., Trouvé, E., Lee, J., & Buzuloiu, V. (2006). Intensity-driven adaptive-neighborhood technique for 

polarimetric and interferometric SAR parameters estimation. IEEE Transactions on Geoscience and Remote 
Sensing, 44(6), 1609-1621. 

[8] Buades, A., Coll, B., & Morel, J. M. (2005). A review of image denoising algorithms, with a new one. 
Multiscale Modeling & Simulation, 4(2), 490-530. 

4.5 Gap Filling: Data Interpolating Empirical Orthogonal Functions 
(DELTARES) 

The rising need for complete datasets in several geophysical applications led to the development and 
improvement of techniques for the reconstruction of missing data in space and time. One of these is the Data 
Interpolating Empirical Orthogonal Functions (DINEOF) method. DINEOF achieves this using an EOF-based 
technique. In particular, it manages to fill gaps by iteratively decomposing the data field via Singular Value 
Decomposition (SVD) until a best solution is found.  This is done by progressively considering more EOFs in the 
reconstruction of missing values until the minimization of error converges [Nikolaidis et al. 2013]. 

4.5.1 Description of the module 

DINEOF determines the dominant spatial and temporal patterns of variation in the data set, called Empirical 
Orthogonal Functions, EOFs (principal components). By putting together these modes of variation one can obtain 
a so-called gap-filled reconstruction of the MERIS data at all grid locations and sample times 
In an EOF analysis, the MERIS 3D hypercube “time series” [x, y, time] is decomposed into its statistically dominant 
patterns. This yields a total of p 2D maps [x,y]p with associated 1D time series [time]p. Multiplying a 2D map 
[x,y]p with a 1D time series [time]p will yield an approximation of the original 3D dataset [x, y, time]. Using more 
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modes p will yield a better approximation. However, the first few modes already contain most of the variance of 
the dataset. This is the variance associated with large scale patterns. 
The figure below illustrates the decomposition of the MERIS data in the spatiotemporal EOF modes and the 
reconstruction (gap filling). 

 
Figure 13 Schematic work flow of DINEOF analysis of a time series of RS images. [Src :CoBiosProject - FP7-SPACE-2010-1] 

The input image archive is condensed in a two-dimensional matrix of columns of m elements (spatial dimension) 
and rows of n elements (temporal dimension). To construct this matrix, each scene acquired at given t_i time 
(where i=1,…,n) is stored as a one dimensional array, in the i-th column of the matrix. To build each one-
dimensional array, the original two-dimensional scene is scanned in a column-major order (column by column 
and pixel by pixel). The module support only NetCDF files as input. 
 
The calculation of the EOFs can be performed by a standard Singular Value Decomposition SVD technique, which 
provides a decomposition of the initial matrix in 3 matrices giving direct access to the spatial EOF modes and the 
temporal EOF modes. Since the calculation of EOFs requests a set of cloudless images and the interpolation of 
the missing data requests the knowledge of EOFs, this circular dependence has been solved by introducing an 
iterative method.  
 
Therefore, the principle of the algorithm is to fill in the missing data of the initial matrix by using iterative cycles 
of SVD producing a set of EOFs and to find new missing data estimates in each iteration. The initialization of the 
iterative process is done by replacing all missing data with zero values in order to obtain a complete matrix. We 
first apply the reconstruction of X with a single EOF which allows to calculate the first prediction of the missing 
data which replaces the first guess made and allows thus for a second iterative cycle. This iteration continues to 
produce improved missing data and EOF until the changes observed in the missing data estimates between one 
iterative cycle and the previous one are insignificant. The convergence criterion is chosen by the user. This 
iterative cycle is then carried out considering two EOFs, before going to three EOFs, and so on. The optimal 
number of EOFs needed to fill in the missing data is determined by a cross-validation technique: before starting 
the whole procedure, a small percentage of data points are set apart and flagged as missing. Once convergence 
is reached for a fixed number of EOF modes, a RMS is calculated between the reconstructed values and the initial 
dataset aside.  The number of modes that minimizes the error will be considered as the optimal one. 
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4.5.2 Experimental Results 

The results presented in this section make use of ESA’s MERIS data acquired over the domain of interest: North 
Sea and Wadden Sea. The available images were recorded during the overpass of the Envisat satellite occurring 
nominally once per day between 10:00 and 12:00 AM UTC. Although MERIS recorded the optical imagery at a 
full spatial resolution of about 300x300 m2, the standard product for the North Sea is the Reduced Resolution 
(RR) 1x1 km2 resolution pixel values. From the optical reflectance spectra recorded by MERIS, concentrations of 
chlorophyll-a and SPM (suspended particulate matter), CDOM absorption (coloured dissolved organic matter) 
and spectral extinction of visible light (Kd) and estimates of the standard error in these values have been 
computed. These data are based on retrieval by means of the HYDROPT algorithm (Van der Woerd&Pasterkamp, 
2008). The period consider for the results here presented is from January 2003 to December 2009. 
 
Before building the data cubes from the DINEOF, MERIS data have been evaluated for outliers and flagged pixel 
values have been rejected according to the criteria explored in Gaytan et al. (2013) and Eleveld & De Reus 
(2010).It is important than within the cleaning procedure not only outliers but also images with extreme cloud 
coverage should be excluded from the dataset. Base in experience and literature (Alvera-Azcárate et al. 2005; 
Sirjacobs et al. 2010) it is recommended to use only images containing at least 2% of the coverage. 
 
MERIS data used in this example has been projected onto the ZUNO-DD (“ZUidelijkeNOordzee, 
DomeinDecompositie”) Delft3D-WAQ grid. This grid has a lower resolution than the satellite images.  The reason 
for that is that Gap filled data will be used it in a later state in the water quality model. 
 
To illustrate the gap filling module, two procedures are presented. The first one considers 7 individual data cubes, 
one per year (2003,…,2009) and de second consider one data cube for the all period (2003-2007). The purpose 
of those schemas y to illustrate how sensible is the reconstruction procedure to the amount of images. Figure 14 
shows the images before the filling procedure and after the filling procedure for the 2 scheme. 

 
Figure 14 Illustration of the Gap filled data using yearly available MERIS data and longer period (2003-2009) of data 

To validate the results presented in the Figure 14 available In-situ data was been used to evaluate the 
performance of the reconstructed images.  
 
Chlorophyll-a measured values are acquired from the monitoring stations which belong to the Dutch water 
agency Rijkswaterstaat (RWS). The sampling is characterized by a limited frequency in time: the stations tend to 
have 10 to 20 measurements per year. Figure 15 shows the location of the monitoring stations. In total 24 
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stations are used, with different distances for the coast, 12 of them are located less than 10 km far from the 
coast, while the most distant one is 235 km far from the coast; 6 out of 24 stations are located in the Wadden 
Sea. 

 
Figure 15 Location of the monitoring stations 

In order to compute a goodness of fit, in this case the Bias and Root Mean Square Error (RMSE), it is necessary 
to match the samples in time. Unfortunately In-situ measurements and the MERIS information do not happen 
often at the same time. So a time window of 24 hours was consider for the data matching. 
 
Table.2 shows the error statistics for the both schemas, also the number of images per year and the percentage 
of area cover along the year. The average coverage of the data set is about 85%. Spatially, regions with the 
highest missing data percentage are the coastal area. The accuracy of DINEOF algorithm under both schemas is 
very similar, also viable in Figure 16 . Nevertheless when considering larger imagery for the reconstruction the 
spread in the errors is reduced.  
 

Year 
Numb of 
images 

% of cloud 
coverage 

Yearly 
reconstruction 

2003-2009 

BIAS RMSE BIAS RMSE 

2003 234 84.59% -2.476 6.976 -2.417 7.245 

2004 234 85.23% -0.578 9.460 -1.028 7.373 

2005 249 87.39% -0.998 12.011 -0.502 6.784 

2006 238 86.69% -2.347 6.890 -2.138 6.747 

2007 205 85.04% -2.338 6.820 -2.283 7.541 

2008 162 86.77% -2.280 9.414 -1.423 10.889 

2009 181 88.25% -1.405 8.082 -0.846 8.670 

Table.2 Bias and Root Mean Square Error of the reconstructed images for the two schemas 
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Figure 16 In-situ measurement VsRecostructed MERIS images. Plot in the left shows the yearly schema, plot in the right 
shows the comparison when considering long period imagery. 

Finally, Figure 17 shows time series of reconstructions of chlorophyll-a data and the original images with missing 
values corresponding to cloudy conditions. The selected station has 22% of valid data along for the year 2004. It 
is clear that the reconstruction yields realistic chlorophyll-a values even for the highest percentages of cloud 
cover. 

 
Figure 17 Time Series of original MERIS data and reconstructed MERIS. In-situ measurements are represented by red 
dots, original MERIS by green dots, MERIS reconstructed yearly by black dots and MERIS reconstructed by long period 
imagery by magenta dots. 

4.5.3 Flow chart 

For this module two main inputs are need it, a file containing the data cube and a file containing a mask of the 
area. The mask files contain binary information, 1 if the pixel should have in principle a value or 0 otherwise.  
 
The inputs for the module are different layers or images of the same variable with some overlapping area. The 
resolutions/coarseness can vary but the geographical reference must be the same for all input layers. So far the 
module support only NetCDF files. The flow char of this module is presented in Figure 18. 
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The first step for the module is to read NetCDF files to produce the Data cube in a DINEOF input format. 
Moreover, it is possible to set the logarithmic transformation in order to convert the natural values of the studied 
variable into their corresponding logarithmic values. 
 
The next step is to proceed with the gap filled process using DINEOf. If the user has specific values for the 
parameter to be used in the gap filling procedure, it is possible to add those specification, otherwise the module 
has some default setting for the DINEOF.  

 
Figure 18Flowchart for the Gap filled module 

 

Figure 19 Structure of the DINEOF folder  
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The final step of the module is to convert the DINEOF data cube output format back to the NetCDF file format. If 
a logarithmic transformation was chosen, the output will be converted back to natural values .Figure 19 shows 
the structure of the folder and the files to be changed with the user paths and settings. 
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5 Image processing  

5.1 Indices and Band Ratios(CREAF-UAB) 

Indices and band ratios are the most common form of spectral enhancement. The technique of rationing bands, 
involves, basically, dividing the spectral response value of a reflectance pixel in one band or image with the 
spectral value of reflectance of the corresponding pixel in another band or image. This is done with the objective 
of normalize varying effects such as soil difference or in order to maximize sensitivity to the feature of interest, 
for instance, the relative health of vegetation. The most common approaches are based on simple band division 
to include weighting or difference as well as introduction of new variables. Of these, the Normalized Difference 
Vegetation Index (NDVI) or the EVI (Enhanced Vegetation Index) are the most widely used.  
With this module (CalcImg) mathematical and logical operations on images can be performed simultaneously on 
any type and number of layers. All rasters contained in the expression must have the same geographical extent, 
resolution and reference units in the same reference system. All calculations are made with double precision 
(15-16 significant digits, approx. range 1.7E-308 to 1.7E+308). There is no limit to the length and complexity of 
the expression (it will only depend on the user's hardware and operating system). The logical-mathematical 
formula to be calculated is entered in the first entry field and is formed by numbers, layers (raster and vector), 
operators and functions. Some functions and operators are already implemented. The resulting data type can be 
controlled and supports several types (integer, real, double,,,). 
 
Moreover, to simplify the production of widely used vegetation indices, another module (Indexs) is provided to 
automatically compute several indices, using well-known formulas: 
 
1) DVI (Differential Vegetation Index): Difference between near infrared (NIR) and red (R) bands of a sensor. 

 
 
2) RVI (Ratio Vegetation Index): Simple division between the near infrared and red bands. It is being used for 
biomass and leaf area index (LAI) assessments from 1969. 

 
 
3) NDVI (Normalized Difference Vegetation Index): The NDVI vegetation index has been the most used in Remote 
Sensing of vegetation in the last decades. It was developed by Rouse et al. (Rouse J.W., Haas, R.H., Schell, J.A. i 
Deering, D.W. "Monitoring Vegetation Systems in the Great Plains with ERTS". Third ERTS Symposium, NASA SP-
351, I:309-317 (1973)) from the analysis of Landsat-MSS data. They found that, although the simple quotient 
(RVI) could be used as a measure of relative greenness, the position and cyclical deviations could cause important 
errors. They defined the Normalized Difference Vegetation Index (NDVI) in the following way: 

 
 
4) TVI (Transformed Vegetation Index): Transform of the NDVI index that allows working without negative values. 

 
 
5) PVI (Perpendicular Vegetation Index) 
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where S indicate soil reflectance and V indicate vegetation reflectance. 
 
6) WDVI (Weighted Difference Vegetation Index) 
 
7) SAVI (Soil Adjusted Vegetation Index): Index that intends to minimize the soil effect on the vegetation index. 
This effect is important for partially covered surfaces. 

 
L = constant that depends on the type of soil. A typical value is 0.5. 
 
8) TSAVI (Transformed Soil Adjusted Vegetation Index): Readjustment of the SAVI index to consider the effect of 
the soil brightness. 

 
 
9) MSAVI1 (Modified Soil Adjusted Vegetation Index - 1): The adjustment factor L of SAVI index is not constant, 
but an inverse function of the vegetation cover. There have been proposed two solutions: 

 
 
10) MSAVI2 (Modified Soil Adjusted Vegetation Index - 2): 

 
 
11) TWVI (Two-axis adjusted Vegetation Index): Studying the complexity of the soil line, it has been proposed an 
index that improves some aspects of PVI and SAVI indexes. This improvement is appreciable when the offset D 
between a pixel of soil (without vegetation) and the soils line is large: 

  
 
12) ARVI (Atmospheriaclly Resistant Vegetation Index): 
Vegetation index similar to NDVI but improved in the way that it considers the atmospheric effects. To achieve 
this, the red band is substituted by a red-blue band that accounts for the different atmospheric dispersion in 
these two bands giving the following expression: 

 

where  is the combined reflectance of the red and blue bands. The constant 
is a calibration parameter that depends on the type of atmosphere. By default its value is 1. 
 
13) SARVI (Soil Adjusted and Atmospheriaclly Resistant Vegetation Index) 
 
14) TSARVI (Transformed Soil Atmospheriaclly Resistant Vegetation Index): 

 
Where the soils line in the spectral range red, blue and near-infrared is defined by: 
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15) AVI (Angular Vegetation Index): The AVI (Plummer et al. 1994) was chosen for the ATSR-2 sensor, and aims 
to use the availability of the green channel to normalize the effects of soil types and the atmosphere while 
maintaining sensitivity to the properties of the vegetation. The index is based on a geometric concept of the 
angle defined between the green, red and near-infrared wavebands, which characterizes chlorophyllthe 
absorption. 

 
The  correspond to the centers of each of the wavebands. 
 
16) GEMI (Global Environment Monitoring Index): This index was proposed for NOAA-AVHRR sensor in order to 
have a global knowledgement of the vegetation on the Earth. It is a non linear index that minimizes the solar and 
atmospheric effects. 

 

 
 
 
17) NDWI-1 (Normalized Difference Water Index): The NDWI was created by McFeeters (1996) to delineate open-
water features such as lakes and reservoirs, and improve their detection in satellite images. In this index water 
surfaces have positive values, while land and vegetation surfaces have 0 or negative values. 

 
McFeeters, SK (1996) "The use of the normalized difference water index (NDWI) in the delineation of open water 
features". INTERNATIONAL JOURNAL OF REMOTE SENSING. 17: 1425-1432. 
 
18) NDWI-2 (Normalized Difference Water Index): The NDWI index has been developed in many different ways 
and some authors (Ouma & Tateishi, 2006) have proposed modifications. The NDWI2 uses the NIR and MIR bands 
to distinguish shoreline from water masses. This index makes it possible to produce rapid mapping of the 
shoreline. 

 
Ouma, YO; Tateishi, R. (2006). "A water index for rapid mapping of shoreline changes of five East African Rift 
Valley lakes: an empirical analysis using Landsat TM and ETM+ data". INTERNATIONAL JOURNAL OF REMOTE 
SENSING. 27: 3153-3181. 
 
19) EVI (Enhanced Vegetation Index): The EVI obtains a response from the structural variations of the vegetation 
canopy including the leaf area index (LAI), the type and architecture of the canopy and plant physiognomy. The 
EVI was developed to optimize the vegetation signal with improved sensitivity for high biomass densities, which 
it achieves by separating the signal coming from the vegetation and from atmospheric influence. 
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The EVI is an improved version of the NDVI with an L=1 soil correction factor, two C1=6 and C2=7.5 coefficients 
designed to correct atmospheric dispersion effects and a G=2.5 gain factor for freely-available data from the 
MODIS satellite. 
 
20) AFRI (Aerosol Free Vegetation Index): The AFRI was developed from the NDVI and uses the bands of the MIR 
mid-infrared by establishing a correlation between these bands for MODIS (p2.1 and p1.6) and the red band. 

  
The superiority of the AFRI is due to the capacity of the MIR bands to penetrate the atmospheric column, even 
with the presence of smoke and sulphates. These indices are therefore useful for evaluating vegetation in the 
presence of smoke, anthropic pollution or volcanic eruptions. It is important to bear in mind that in clear sky 
conditions with low atmospheric influence these indices correlate highly with the NDVI and their values are very 
similar. 
 
21) PRI (Photochemical Reflectance Index): The PRI is an index that makes it possible to estimate the RUE 
(Radiation-Use Efficiency) of vegetation and GPP (Gross Primary Productivity) in Mediterranean ecosystems. The 
evergreen Mediterranean forests display very low seasonal variation in the vegetation indices (NDVI and EVI) 
and very high seasonal variation in carbon absorption. In these cases this index makes it possible to detect what 
part of the absorption capacity of carbon actually occurred. The PRI is obtained from freely-available information 
from the MODIS satellite. 

 
Where the p5.2 corresponds to band 11 (526-536 nm) and thep5.4 corresponds to band 12 (546-556 nm) of 
MODIS. 
Garbulsky, MF; Penuelas, J; Papale, D & Filella, I (2008) Remote estimation of carbon dioxide uptake by a 
Mediterranean forest. GLOBAL CHANGE BIOLOGY. 14. 12: 2860-2867 
 
The Indexs module asks for the names of the files corresponding to the red, infrared and blue bands (only 
atmospheric indexes). It also requires a set of parametres that depend on the index equation. If they are not 
given in the command line, the program will ask for them interactively, suggesting a possible value. 
 
Both CalcImg and Indexs modules are provided as part of the MiraMon Remote Sensing and GIS software 
available to all ECOPOTENTIAL partners any time on demand. Information regarding the inputs, parameters and 
outputs of the module are provided in the relevant Help of the software. MiraMon supports several parameters 
on the command line and allows writing Batch files that can run combining several chained orders. Moreover, 
combining Web Processing Service (WPS) standard and the ISO lineage model, MiraMon allows to easily edit and 
reproduce geospatial workflows described on the metadata, scaling them up to similar situations and executing 
them as remote processes. 
 
Pons, X. (2016). MiraMon. Geographical information system and remote sensing software. Centre de Recerca 
Ecològica i Aplicacions Forestals (CREAF). Retrieved from http://www.creaf.uab.es/miramon 

http://www.creaf.uab.es/miramon
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5.2 Image Time Series –Data Mining System (DLR) 

We present a modular system offering Data Mining and Knowledge Discovery functionality for long time series 
data called Image Time Series- Data Mining (ITS-DM). It implements novel techniques for time series content 
exploration and exploitation. 
 
The Image Time Series –Data Mining system is composed of several components: the Data Model Generation 
(DMG), Data Mining Database (DMDB), Data Mining and Knowledge Discovery (KDD), and the Query Engine and 
Analytics. These components offer functionalities such as ingestion and feature extraction from radiometrically 
and geometrically corrected Earth-Observation Data, metadata extraction, semantic definition of the image 
content based on machine learning and data mining methods, advanced querying of the image archives utilizing 
data content, metadata and semantic categories In the system the processing chain starts with the ingestion of 
Earth-Observation products, followed by knowledge discovery and data mining processes to obtain semantic 
annotations and, finally, to enable the end-user to perform multiple queries based on different parameters and 
compute analytics about the data content. In the following, we briefly describe the main components of ITS-DM. 
 
In the Data Model Generation, the main steps performed are: 1) Metadata extraction by reading the annotation 
file and retrieving the relevant metadata entries as for example: locations, angles, mission information, etc. 2) 
Image tiling and quick-look generation in order to create a multiresolution tile pyramid (several grid levels with 
tiles of different size); 3) Feature extraction, which is based on tiles. When applying tile-based feature extraction, 
the methods consider the whole patch as one entity, using the relations between all pixels within the patch and 
not only single pixel information. The second component: Data Mining Database is a relational Database 
Management System (DBMS), which acts as the core of the system, interacting with all user-oriented 
components and supporting their functionality. The use of a DBMS provides some advantages such as a natural 
integration of different kinds of information, ensuring the integrity of relations, speed of operations, etc. The 
Knowledge Discovery in Databases (KDD) component is used for the semantic definition of the image content. 
This component is based on semi-supervised learning methods and comprises relevance-feedback in order to 
include human expertise in the annotation process. The last component, the Query Engine (QE) allows the end-
user to find desired scenes and to retrieve images containing the required content. The image archive can be 
queried by using metadata and semantic definitions. In the case of queries based on given metadata, metadata 
entries such as geographical coordinates, acquisition angles and time, product types, etc. are used as query 
parameters. In the query engine is possible to compute analytics about the results of the query as well as about 
the content of the image archive.  
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6 Fusion modules and data integration from multiple 
sources. 

6.1 Non probabilistic fusion techniques (DELTARES) 

This section, briefly describe a number of non-probabilistic data fusion methods. Data fusion systems are often 
complex combinations of sensor devices, processing and fusion algorithms. At the end of this section we highlight 
few example applications that bring out these features. 

6.1.1 Description of the module 

Multisensor data fusion is the process of combining observations from a number of different sensors to provide 
a robust and complete description of an environment or process of interest. The first step of this module is to 
associate pixels from different layers (data sets) to the target grid. Figure 20 shows the schematization of three 
basic approaches. 

Nearest Block Radius 

   
Figure 20 Schematization of the four basic approaches to association pixel data onto a grid. The parallelogram indicates 
a single grid cell. Green dots are pixel values form a single layer; red circles indicate which of these pixels are included in 
computing the representative value for the geographic target grid cell (blue circle). This association of pixels is done for 
the n layers under consideration. 

6.1.1.1 Weighted averaging. 

Distance Weighting is a type of deterministic method for multivariate interpolation with a known scattered set 
of points. The assigned values to unknown points are calculated with a weighted average of the values available 
at the known points. The name given to this type of methods was motivated by the weighted average applied, 
since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning 
weights. 
The weighted average equation and some fundamental properties are described below. 




N

i i

i 1

X w X  

The sum of all the weights is equal to 1. 

1w
n

1i

i 
  

An average is greater than or equal to the smallest number and smaller than or equal to the largest number. 
Assuming wi ≥ 0 for all i, 

maxmin XXX 
 

In addition, an overall average is equal to a weighted average of group sub-averages1.    
The average could be considered as the center of gravity.  Thus if a leverage is placed under the average value, 
then one can achieve a balance. 



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 40 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

As wi increases, X → Xi. The greater the value of the weight, the closer the average tends to the number in the 
series associated with the weight. 

The weights given to each pixel in the modules presented here can be based on 
ie and id . Where 

ie  is the 

estimation of the error for pixel i , and id is the distance between the target grid cell and pixel i . 

6.1.1.2 Weighted Ensemble Mean 

The Weighted Ensemble Mean is a variation of the weighted mean. This method assumes that the errors are 

normally distributed with standard deviation provided by the retrieval errors
ie . Then for each pixel sample n

number of samples from that distribution and compute the weighted average and a new standard deviation for 
the ensemble errors. (See Blaas et al. 2012 for details.) 

6.1.1.3 Nearest neighbor 

This method assigns the value of the nearest point to each grid node. This method is useful when data are already 
evenly spaced, but need to be converted to a SURFER grid file. Alternatively, in cases where the data are close to 
being on a grid, with only a few missing values, this method is effective for filling in the holes in the data. 

6.1.1.4 Multiple linear regression 

Linear regression is an approach for modelling the relationship between a scalar dependent variable and one or 
more explanatory variables. If only one explanatory variable is used, the approach is called simple linear 
regression. If more than one explanatory variable is used, the approach is called multiple linear regression. The 
relationships are modelled using linear predictor functions whose unknown parameters are estimated from the 
data. These are called linear models. A linear model looks as follows: 

0 1

p

k kk
Y X  


    

where Y is the dependent or response variable, Xk stands for the independent or predictor variable(s),  β0 stands 
for the regression intercept, βj stands for the regression coefficient(s) and ε stands for the residual, also called 
the error term. The regression intercept is the expected mean value of Y when all X are zero. The regression 
coefficients represent the mean change in the dependent variable for one unit of change in the independent 
variable while holding other predictors constant.  

6.1.1.5 Kriging 

Kriging attempts to express trends suggested in the data, so that, for example, high points might be connected 
along a ridge rather than isolated by bull's-eye type contours. Kriging is a very flexible gridding method 
The basic tool of geostatistics and kriging is the semivariogram.  The semivariogram captures the spatial 
dependence between samples by plotting semivariance against separation distance. The premise of any spatial 
interpolation is that close samples tend to be more similar than distant samples (this is also called spatial 
autocorrelation).  This property of spatial data is implicitly used in IDW. In kriging, one must model the spatial 
autocorrelation using a semivariogram instead of assuming a direct, linear relationship with separation distance.   
Semivariance equals one-half the squared difference between points separated by a distance d±∆d (assuming 
no direction preference).  As the distance between samples increase, we expect the semivariance to also increase 
(again, because near samples are more similar than distant samples).  This is true, however, only up to some 
given separation distance.  For this distance and up, points are unrelated.  Stated another way, if 50m is this 
critical separation distance, two points separated by 50m are likely to be just as similar (or dependent on one 
another) as samples separated by 100, 200, 300, or any distance greater than 50m. 
The inclusion of secondary information, in the present work is summarise as followed (Serpa, 1998): Using the 
related secondary information with the main attribute (Z's (x)), known in all the study area the final estimated 
cartography Z*s (x) is equal to the kriged map Z*ok(x) * plus a deviation e(x):  

Z x Z x e xs ok' ( ) * ( )* *( )   



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 41 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

Where e*(x) is the deviation values between the real values of the secondary variable (Z s (x)) and the kriged 
values Z*s(x) from the secondary information: 

 e x Z x Z xs s( ) ( ) * ( ) 
 

Z*s (x) is the value kriged with the secondary data (soft) in the points where the data referring to the main 
information had been collected Xa: 

 Z
s

x Z
s

xa

a

a

*
( ) 

 
The final map of estimated values Z*ok(x), shows always in the location of the experimental supports, the main 
information (index). Reversibly, when main information does not exist takes advantage the secondary 
information.  

6.1.2 Experimental Results 

Chlorophyll concentration provides an estimate of the live phytoplankton biomass in the surface layer. It is also 
referred to as the amount of the green pigment chlorophyll. For this example, Medium Resolution Imaging 
Spectrometer(MERIS) recordings of the southern North Sea are used. From the spectra of these recordings water 
quality data have been retrieved with the algorithm described in Doerffer (2007). MERIS for coastal applications 
are the spatial resolution of 300m.  
Also the L2 ocean color products (chlorophyll-a concentration) generated by Moderate Resolution Imaging 
Spectroradiometer (MODIS)is used. Products derived from MODIS sensor have approximately 1 km-per-pixel 
resolution. The plotted values from MODIS and MERIS are presented in Figure 21. 

 
Figure 21 Chlorophyll-a values (µ/l) from MODIS1 and MERIS for 15th March 2009. 

For the fusion on the data sets above presented the Block schematization was chosen, meaning that the data 
used at each grid point are those pixels lying strictly with the cell grid. The results of testing the different fusion 
methods are presented in Figure 22. 

                                                           
1NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2014): Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS) Ocean Color Data, NASA OB.DAAC. http://doi.org/10.5067/ORBVIEW-
2/SEAWIFS_OC.2014.0. Accessed on 2016/02/29. 
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Figure 22 Different fusion technique for chlorophyll-a values in the North Sea area. 

Another example is in the Xynthia area. Xynthia is a part of the Bay of Biscay at the Southwest coast in France. It 
is the area between 45.5 and 46.5 degrees North and 0.7 and 1.7 degrees West. As shows the figure below, 
different sets of bathymetry data are available for this area. 

 
Figure 23 Different bathymetry datasets available in the Xynthia area: GEBCO_2014 Grid is presented at 30 arc second 
intervals of latitude and longitude, EMODnet with a resolution of 1/8*1/8 arc minutes, which is around 230 meters at 
the equator and bathymetry derived from Landsat 8 optical imagery by applying the MIP algorithm 

 
The results of testing the different integration methods and validating the results are presented in Figure 24. It 
includes a validation of the individual base datasets that were available as well as a validation of the results of 
the different integration methods. The validation result is presented in the table below. 



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 43 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

 
Figure 24 Different fusion technique for the Xynthia area: Average, weighed average per pixel , weighed average per 
layer, multiple regression and Kriging. 

For this example, Table.1 shows that the Regression Kriging is the technique that produces the lowest error after 
the merging of the data. This is also the only technique that generates an output where the error is lower than 
in all of the input bathymetry datasets. Therefore Regression Kriging seems to be the technique that leads to the 
highest accuracy when combining those data sets 
 
 

Data RMSE Error Mea 

Average 1.3773286 -0.10440215 

Weighted average per pixel 1.2608655 -0.09335774 

Weighted average per layer 1.2137457 -0.07757859 

Multiple regression 1.2164039 -0.10827557 

Regression Kriging 0.7170053 -0.05279199 

Table.1 Validation of different fusion technique. 

6.1.3 Flow chart 

The inputs for the module are different layers or images of the same variable with some overlapping area. The 
resolutions/coarseness can vary but the geographical reference must be the same for all input layers. So far the 
module support only NetCDF files but in principle can be extended to support GeoTIFF format for example. The 
flowchart of the module is presented in Figure 18. 
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Figure 25 Flowchart for the fusion data module 

For certain fusion methods it is required provide an estimation of the errors at the pixel level, or a “general” 
estimation of the error per layer over the all domain. Therefore if case of selecting weighted average based on 
errors, an extra layer of errors information should be provided also as an input. 
The user must provide a target grid. This is the final grid where all layers will be projected and merge. This target 
grid can be one of the input layers or a complete new grid. The final product is a single layer with the merged 
data. 

6.1.4 References 
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371. 

[2] Danielson, J. J., &Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010) (No. 
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[3] R. Doerffer& H. Schiller (2007) The MERIS Case 2 water algorithm, International Journal of Remote 
Sensing, 28:3-4, 517-535, DOI: 10.1080/01431160600821127 

[4] EMODnet Lot 1 Bathymetry (2015) Guidelines for metadata, data and DTM QA/QC.Retrieved February 3, 
2016, from http://www.emodnet-
bathymetry.eu/documents/emodnet_hydrography/html_page/qa_qc_dtm_specifications_04022015.pdf. 

[5] Federico Castanedo, “A Review of Data Fusion Techniques,” The Scientific World Journal, vol. 2013, Article 
ID 704504, 19 pages, 2013. doi:10.1155/2013/704504 

[6] Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., ... & Catania, G. (2013). 
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7(1). 

[7] Jawak, S.D., Vadlamani, S.S. and Luis, A.J. (2015) A Synoptic Review on Deriving Bathymetry Information 
Using Remote Sensing Technologies: Models, Methods and Comparisons. Advances in Remote Sensing, 4, 
147-162. http://dx.doi.org/10.4236/ars.2015.42013 

[8] Pleskachevsky, A., Lehner, S., Heege, T., & Mott, C. (2011).Synergy and Fusion of Optical and Synthetic 
Aperture Radar Satellite Data for Underwater Topography Estimation in Coastal Areas.Ocean Dynamics, 
61(12), 2099-2120. 



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 45 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

[9] Smith, W. H. F., & Wessel, P. (1990).Gridding with continuous curvature splines in tension.Geophysics, 55(3), 
293-305. 

6.2 Integration of in-situ data in Linear Spectral Mixing Analysis (LSMA) for 
the onshore coastal sediment characterization. (ISPRA) 

6.2.1 Description of the module 

Beach dune systems are important for coastal zone ecosystems: they represent natural sea defenses by 
dissipating wave energy and incrementing coastal protection. Synoptic maps of site-specific sediment 
composition, grain size and moisture content are a key input in ecological modeling. The extraction of such 
information requires adequate bio-geophysical and empirical models and analysis techniques, like Linear 
Spectral Mixing Analysis (LSMA). 

Hyperspectral or multispectral data, integrated with in-situ measurements of hyperspectral radiometry, grain 
size, natural water content and mineralogical composition, can be used to estimate the spatial distribution of 
onshore coastal sediment characteristics (Innocenti et al., 2013; Manzo et al., 2015, Valentini, 2013). 

The integrated approach showed in Figure 26 makes use of hyperspectral data (MIVIS), radiometrically and 
spatially corrected, with in-situ spectral signatures of collected sediment samples, supplied with laboratory 
analysis of mineralogical and moisture content. The workflow is divided in 3 main steps. 

1) Hyperspectral data are atmospherically corrected and signal-to-noise estimation is used to remove 
bands whose radiance energy was low in relation to atmospheric absorption bands. 

2) As water content in beach sediments is the main factor reducing the reflectance and modifying the 
spectral properties, water content characterization is performed in order to spatial divide the 
hyperspectral dataset in subsets. In-situ data of natural water content are compared with airborne 
hyperspectral data using multivariate linear regression analysis in order to generate a moisture map and 
remove the effect of light absorbance of water in beach sediments. Following the same approach, in-situ 
data of sediment grain size are compared to the airborne hyperspectral data to generate maps of grain 
size distribution. 

3) LSMA technique (Small 2009; Taramelli et al., 2013; Valentini et al., 2015; Manzo et al., 2015) combines 
the linear spectral mixing space concept within hyperspectral or multispectral data, in order to identify 
the spectral endmembers representative of the spectral variability and identify their fraction of 
abundance for each pixel. The spectroscopy of sediments is analyzed in the mixing space obtained by 
Principal Component Analysis (PCA) of the image bands.  

4) Spectral libraries of in-situ collected radiometry can be used either as spectral endmember in LSMA or 
as validation tool to characterize the spectral properties of the spectral endmember identified from the 
mixing space. Mineralogical composition, measured from sediment samples using XRD (Carbone et al., 
2011), is finally used to characterize each spectral endmember and convert spectral fraction maps to 
minerals abundance maps. 



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 46 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

6.2.2 Flow chart 

 

Figure 26. Workflow for mineralogical characterization of the beach sediment using a hyperspectral data integration 
tool. (Edited from: Manzo et al., 2015). 

6.2.3 Experimental results 

The integration of in-situ measurements with airborne hyperspectral data was successfully applied for the 
characterization of onshore coastal sediment in the area of Sabaudia (Italy) (Innocenti et al., 2013; Manzo et al., 
2015).  

Field measurement included the acquisition of spectral signatures of 350 coastal sediment and the collection of 
57 samples to identify grain size, mineralogical composition and natural water content. 

MIVIS hyperspectral data were atmospherically corrected using ATCOR4® based on the MODTRAN radiative 
transfer model (Matthew et al.,2000), and signal-to-noise estimation was used to remove bands whose radiance 
energy was low in relation to atmospheric absorption bands.  

Water content (W%) is defined as the amount of water in the pore of the sediment, and it is the physical property 
characterized by soil moisture. The radiometric interval 1.45-1.70 µm and the MIVIS thermal band at 8.34 µm 
were used as the reference for sediment moisture analysis, focusing on a comparison of in-situ samples and 
MIVIS hyperspectral data (Manzo et al., 2015). Moisture information was used to generate a spatial subset from 
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MIVIS data, representing area of dry sediments, that was further analysed using empirical models and LSMA 
technique. 

Grain size was spatially estimated by means of multiple linear regression model from in-situ samples (dependent 
variable) and the MIVIS data (independent variable), generated for all the MIVIS band combination and limited 
to two to avoid problem of overfitting (Innocenti et al., 2013). Laboratory and field analysis provided an empirical 
estimation to characterize sediment grain size and the moisture distribution related to natural water content, 
which masks the spectral features related to other sediment characteristics such as mineral composition or grain 
size. As result of the water content and granulometric analysis, moisture map and grain size map were generated 
from airborne MIVIS hyperspectral data (Figure 27). 

 

Figure 27. Sediment moisture and grain size estimated by integrating in situ measurement on beach sampling points 
with airborne MIVIS hyperspectral data. 

LSMA technique was applied to the spatial subset from MIVIS data in order to identify the minerals abundance 
within the onshore coastal sediments. 

Two significant spectral signatures were considered as representative for the characterization of coastal 
sediments from the MIVIS data in the study area, and were selected as endmembers in the LSMA analysis for the 
retrieval of abundances maps. The application of LSMA to the dry beach subset could be used to define the 
spatial distribution of spectral endmembers, characterized by different mineralogical compositions. The 
integration with the mineralogic composition measured using XRD was finally used to derive minerals abundance 
maps. 
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6.3 Integration of expert knowledge, satellite multispectral and in-situ 
radiometry to map habitat types. (ISPRA) 

6.3.1 Description of the module 

Satellite optical multispectral images can be integrated with in-situ data and expert knowledge to generate maps 
of habitat types, following habitat classification standards (Valentini et al., 2015). Figure 28 shows the workflow 
for habitat mapping from the integration of satellite optical multispectral data, in-situ data and expert 
knowledge. 
Satellite optical multispectral data are first accurately georeferenced and radiometrically corrected. In-situ 
spectral signatures are collected and spectrally resampled in order to match the spectral sensitivity of the 
satellite multispectral sensor. The spectral resampling is a procedure that convert the radiance response at given 
set of wavelengths to a target set of wavelengths, using a Gaussian model with Full-Width-Half-Maximum 
(FWHM) equal to target wavelengths spacing. 
Habitat types mapping workflow is composed by 6 main steps (Figure 28): 

1) First image analysis step is preprocessing (radiometric calibration, data reprojection) and a preliminary 
discrete classification using Maximum Likelihood Algorithm (MLLH), that is necessary to reduce the 
spectral heterogeneity of the image dataset.  

2) A Principal Component Analysis (PCA) of the multispectral image is then performed to reduce the 
numerical variability of each pixel on the basis of its spectral composition. The resulting mixing space 
features the most pure pixels at the apexes of the components axis and the mixed pixels (mixture of 
cover typologies) along the trajectories between the apexes.  

3) Supervised classification step, using Maximum Likelihood Algorithm (MLLH) method, is applied to the 
image in order to reduce the spectral variability. 

4) Linear Spectral Mixture Analysis (LSMA), a spectral sub-pixel analysis, is then used to solve the linear 
combination model of mixed spectral contributions using spectral endmembers. The spectral 

http://hdl.handle.net/2067/2800
http://hdl.handle.net/2067/2800
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endmembers are selected from the multispectral mixing space (Small, 2004; Valentini, 2015; Valentini et 
al., 2015), and represent the most spectrally representative cover types. 

5) Classification of cover types is performed from the abundance fractions generated using LSMA by means 
of a decision tree. Each pixel is classified on the base of its abundance values, and it is assigned to a 
natural target based on the strongest Pearson correlation score obtained between the correspondent 
pixel spectral profile and the in-situ spectral library. The decision tree was selected as the most flexible 
instrument to translate the expert knowledge from botanists and ecologists to a image processing 
analytical tool. It allows the quantification of specific thresholds across cover abundance maps to 
represent the relevant components of the environmental variability. 

6) By consulting and interpreting the standard habitat classification databases, a table for the conversion 
of the standard product of cover classes can be used to generate the added value product of the habitat 
types. Validation of the results is done using a confusion matrix (Congalton, 1991; Congalton and Green, 
1999) for the comparison of habitat type map and in-situ samplings. 

 

6.3.2 Flow chart 

 
Figure 28. Standardized processing procedure for habitat types mapping integrating satellite optical multispectral data, 
in-situ data and expert knowledge. (Edited from: Valentini et al., 2015). 
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6.3.3 Experimental results 

Habitat types mapping was successfully done integrating satellite optical multispectral data, in-situ data and 
expert knowledge for the Po Delta (Italy) area (Valentini et al., 2015). 
 
A multispectral satellite image was acquired on 11/09/2012 by the High Resolution Visible and InfraRed (HRVIR) 
sensor aboard the SPOT-4 (Satellite Pour l’Observation the la Terre), with spatial resolution 20 m. The image was 
geo-referenced and radiometrically calibrated to obtain reflectance values. 
 
Field spectral measurements of sand and mixed vegetation targets of terrestrial and aquatic environment were 
acquired, specifically different sediment types, vegetation groups, intertidal and very shallow waters. 
In addition, vegetation types and the relative cover percentage were identified to support the taxonomic 
identification. Sediment and water samples were analysed in laboratory to obtain information about Chl-a, 
degraded pigments, dissolved organic carbon and coloured dissolved organic matter content. 
SPOT multispectral data was analyzed using Maximum Likelihood Algorithm (MLLH). PCA and LSMA analysis were 
used to generate fractional abundances from the multispectral data. The resulting cover map (Figure 30a) is 
composed of thirteen different cover classes obtained with the decision tree based on the fractional abundance 
from LSMA. Root Mean Square error was calculated for each image pixel, and reported in Figure 30b. 
 

 
Figure 29. In situ spectral library  



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 51 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

 
Figure 30. a) Cover map. b) Spatial distribution of Root Mean Square Error. (From: Valentini et al., 2015). 

The identification of the composition of the mixed pixels was obtained by evaluating the Pearson correlation 

score between the field spectra and the representative spectra collected from the image (Figure 29). 
The basic knowledge of a large scale description of the study area from the analyzed SPOT image can also be 
associated to classes of EUNIS and Natura 2000 habitat types. Each habitat type is associated with one or more 
cover classes based on the expert knowledge interpretation from botanists and ecologists to identify the 
contribution of more than one field observation.  
An example of the applicability of this integration tool and the described classification analysis is showed in Figure 
31, representing the potential nesting area of an endangered bird species, Sterna albifrons classified as ‘Least 
Concern’ in the IUCN Red List of Threatened Species. Nesting areas are derived from the classified cover map 
and correspond to sandy spits not inundated during high tides and characterized by the presence of sparse 
vegetation. 
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Figure 31. Potential nesting areas of Sterna albifrons. 

6.3.4 References 

[1] Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. 
Remote Sens. Environ. 37 (1), 35-46. 

[2] Congalton, R.G., Green, K., 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and 
Practices. Lewis Publishers, Boca Raton, FL. 

[3] Small, C., 2004. The  Landsat  ETM+  Spectral  Mixing  Space, Remote Sensing of Environment, 140, pp. 
131-145. 

[4] Valentini E., 2013. PhD Thesis : ‘A new paradigm in coastal ecosystem assessment: linking ecology and 

geomorphology implementing the FHyL approach.’  
http://hdl.handle.net/2067/2800 

[5] Valentini E., Taramelli A., Filipponi F., Giulio S., 2015. An effective procedure for EUNIS and Natura 2000 
habitat type mapping in estuarine ecosystems integrating ecological knowledge and remote sensing 
analysis. Ocean & Coastal Management, 108: 52-64, doi:10.1016/j.ocecoaman.2014.07.015. 

6.4 LiDAR bathymetry integration with multisensory radiometry for seabed 
mapping in shallow waters. (ISPRA) 

6.4.1 Description of the module 

Seagrass cover about 0.1-0.2% of the seafloor worldwide, but has a key role in coastal ecosystem (Duarte, 2002). 
Seagrass meadows are, in fact, among the most relevant components of marine coastal ecosystems (Koch et al., 
2006) and represent a major focal point for both research and conservation strategy (Short et al., 2011). The 
presence of Posidonia oceanica meadow on sand stabilizes superficial sediment and contrasts resuspension of 
particles under the effect of waves and currents, increasing water transparency and mitigating coastal erosion 
processes. Deterioration of the meadow under the effect of human impacts affects the stability of the upper 
limit of Posidonia oceanica and the integrity of the meadow at shallow water.  
The ability of mapping the seabed is depending on the radiometric characteristics of its reflectance and the water 
optical properties (i.e. transparency), while the quantification of cover types is dependent on the optical 
attenuation of the signal due to the water column properties (Silva et al., 2008, Lyzenga, 1985). In order to 
perform an accurate classification of the seabed cover from RS data, the influence of water column in reducing 
the electromagnetic energy should be taken into account, by decorrelating spectral response of seabed targets 
from the water column. 
 

http://hdl.handle.net/2067/2800
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This integration tool makes use of bathymetric information, derived either from LiDAR data processing or 
multibeam acquisitions, to correct optical multi and hyper-spectral data from water column signal attenuation 
and improve classification performances for seabed mapping purpose. Seabed mapping is done using a 
combination of optical multi and hyper-spectral data and in situ data with Linear Spectral Mixing Analysis (LSMA) 
technique. The workflow of this integration tool is divided in four main steps (Figure 32). 
 

1) Optical multi and hyper-spectral data are preprocessed using atmospheric correction modules. Later the 
submerged portion of the image is masked and bright pixels, reporting higher reflectance values, are 
identified. The dataset is normalized using logarithmic transformation, in order to facilitate the finding 
of a linear relation between reflectances and the corresponding bathymetric values. 

2) Data integration module consists in three parts: threshold identification, linear regression analysis and 
slope estimation for data rotation. Threshold identification is done by plotting reflectances values against 
the bathymetric values and finding the bathymetry minimum and maximum threshold values for which 
a good correspondence of the two parameters is obtained. Linear regression analysis is done in order to 
find the numerical relation between each band reflectance, the response variable, and the bathymetric 
value, the explanatory variable. Later the slope of the regression line generated for each spectral band 
is estimated. 

3) The estimated slope is used to rotate the reflectance data in order to correct water column signal 
attenuation in both the optical multi and hyper-spectral data and in situ radiometry. 

4) Linear Spectral Mixture Analysis (LSMA), a spectral sub-pixel analysis, is then used to solve the linear 
combination model of mixed spectral contributions using spectral endmembers. The spectral 
endmembers are selected from the multispectral mixing space, obtained by Principal Component 
Analysis (PCA) of the image bands (Small, 2004), or derive by spectrally resampling in situ radiometry 
(Valentini et al., 2015). LSMA technique identifies the most spectrally representative cover types and 
estimates their fraction of abundance for each pixel. Abundance fractions are finally classified using a 
decision tree in order to generate the seabed map. 
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6.4.2 Flow chart 

 
Figure 32. Seabed mapping classification workflow. DTM product generated from LiDAR active sensor is integrated with 
optical multi- hyper- spectral data and in situ radiometry to correct data for water column attenuation. 

 

6.4.3 Experimental results 

Seabed mapping was successfully performed integrating simultaneous acquisitions of airborne optical 
hyperspectral data, LiDAR and in-situ radiometry in two coastal sites in Italy: Favignana (Cappucci et al., 
accepted), Capo Rizzuto. 
LiDAR data (acquired using Hawk Eye instrument) have been processed in order to obtain the bathymetry (Digital 
Terrain Model) of the area and perform water column correction. MIVIS hyperspectral data (20 spectral bands 
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in the interval 0.44 – 0.81 µm, spatial resolution 3 m) were successfully corrected for signal optical attenuation 
(Figure 33). Lower reliability limit of seabed cover types classification was found to be -9 m (Favignana) and -15 
m (Capo Rizzuto). At lower bathymetries the ability of classification was limited to the identification of bright 
seabed (e.g. sandy seafloor) and dark seabed (e.g. Posidonia oceanica meadows, rocky seafloor). Four seabed 
cover classes have been identified in the study sites (Figure 34b), and corresponds to: sandy bottom, seaweed, 
sparse seagrass, dense seagrass. 
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Figure 33. a) MIVIS hyperspectral data of Marine Protected Area Of Capo Rizzuto (Italy). b) MIVIS hyperspectral data  
decorrelated from water column to normalize the effect of signal optical attenuation. 
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Figure 34. a) Bathymetric map of Favignana study site (Italy). b) Classified seabed map of Favignana study site (Italy). 
(From: Cappucci et al., accepted). 
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6.5 Maximum-dissimilarity algorithm (MDA) as fusion module to 
downscale waves on shallow waters from SAR wind fields, modeled 
wind and waves fields (ISPRA) 

6.5.1 Description of the module 

Wave downscaling in coastal area can benefit from the high spatial resolution (300-1000 m) of wind fields 
estimated from satellite Synthetic Aperture Radar (SAR),  that can be used as forcing in the wave reconstruction. 

Wave downscaling is done using a hybrid methodology (Figure 35) that consists on the selection of a set of wave 
climate cases by means of the Maximum Dissimilitude Algorithm, the propagation of these cases, and finally the 
reconstruction of time series by means of Radial Basis Functions.  

1) First, a calibration step corrects significant wave heights with instrumental data from satellite according 
to the mean wave direction (Mínguez et al., 2011).  

2) Then a selection of representative scenarios of ocean conditions of the total database is done applying 
a Maximum Dissimilarity Algorithm (MDA), which has been proved to identify the most dissimilarity wave 
conditions on a reanalysis database including the extreme events (Camus et al., 2011a). 

3) Propagation of the representative cases of wave climate, selected by MDA, are propagated to coastal 
areas using the numerical model Simulating WAves Nearshore (SWAN; Booij et al., 1999).  

4) Finally the reconstruction of the time series of wave parameters on the DOW grid is done by means of a 
Radial Basis Functions (RBF) interpolation (Camus et al., 2011b). 

5) Validation of the reconstructed wave time series is done using wave data acquired from coastal buoys. 



D4.1 EO data pre-processing and fusion modules        

 

  ECOPOTENTIAL – SC5-16-2014- N.641762   Page 59 of 67 

Co-funded by the  
European Union 
Co-funded by the  
European Union 

6.5.2 Flow chart 

 
Figure 35. Coastal wave climate characterization workflow. The fusion module uses MDA to downscale waves on 
shallow waters from SAR wind fields, modeled wind and waves fields. (Edited from: Gutiérrez et al., 2016). 

6.5.3 Experimental results 

The fusion methodology of SAR wind fields and modeled wind fields for wave downscaling in coastal area was 
successfully applied to northern Adriatic Sea (Gutiérrez et al., 2016) using a selection method based on MDA 
(Figure 36).  
 

 
Figure 36. Selection of cases using MDA. (From: Gutiérrez et al., 2016). 
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As inputs were used the GOW Mediterranean (Reguero et al., 2012), a wind field product generated using 
atmospheric models with a spatial resolution of about 20 km, the Seawind I database (Menéndez et al., 2013) 
with a spatial resolution of about 30 km, and estimated SAR wind fields, acquired by ENVISAT-ASAR with a spatial 
resolution of about 300 m (Figure 37). Wave climate definition for the open boundary of downscaling was 
obtained from GOW database. 
 

 
Figure 37. Comparison of reanalysis wind and SAR wind fields used as input to force wave downscaling. (From: 
Gutiérrez et al., 2016). 
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SAR wind fields were used in combination with modeled wind fields to force the numerical model and produce 
wave fields. These simulations were also forced with the corresponding wave climate through the open 
boundary. 

Comparison with in situ instrumental data indicates the general good quality of the downscaled waves (Figure 

38).  

 
Figure 38. Comparison of observed and modeled Significant Wave Heights. (From: Gutiérrez et al., 2016). 

Although there are differences between SAR and modeled wind fields, a good correlation was found on the 
downscaled waves forced with different wind fields compared with measured significant wave heights from buoy 

(Figure 38). In comparison with previous experimental research (Camus et al., 2011b), results carried out using 
the described data fusion using a hybrid methodology show the ability of SAR satellite data to force time series 
of wave fields by means of a radial basis functions (RBF) interpolation. 
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7 Assimilating data from INSPIRE spatial datasets and 
Copernicus core services/products (ISPRA) 

7.1 Integration of High Resolution Layers (HRL) of Copernicus Land 
Monitoring Services with Corine Land Cover (CLC) and national data sets 

Copernicus is a European system for monitoring the Earth and consists of a complex set of systems which collect 
data from multiple sources: earth observation satellites and in situ sensors such as ground stations, airborne and 
sea-borne sensors. Copernicus provides users with reliable information through a set of services related, among 
others, to environmental issues. 
 
One of the Copernicus services, the Land Monitoring Service, provides Land Cover data for the Pan-European 
component at 20 m resolution. Pan-European High Resolution Layers (HRL) provide information on specific Land 
Cover characteristics, using a classification system that is still considering only general themes as cover types, 
that in this section is named Level 1. Five themes have been identified for Copernicus HRL Level 1, corresponding 
to the level of sealed soil (imperviousness), tree cover density and forest type, (semi-) natural grasslands, 
wetlands and permanent water bodies. 
 
The integration tool here presented, makes use of Corine Land Cover, data about population and OpenStreetMap 
database to generate a National Land Cover Map of Level 2 starting from Copernicus HRL of Level 1. 
 
Data are integrated in a classification tree that is using rules to supply the HRL Level 1 class with more details and 
generate a Level 2 nomenclature for the Italian National area. 
As result, a National Land Cover Map of Level 2 is generated with the following cover classes: main road network, 
residential areas, sport and leisure facilities, mineral extraction sites, dump sites, construction sites, other 
impervious areas, permanent crops, broadleaved forests, coniferous forests, agricultural areas, green urban 
areas, natural grasslands, wetlands, permanent water bodies, dunes and sands, unclassified. 
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Figure 39. Flowchart of the integration tool to generate National Land Cover map of Level 2 from High Resolution Layers 
(HRL) of Copernicus Land Monitoring Services. 

7.2 Copernicus Marine Environment Monitoring Service (CMEMS) products 
analysis for assessing marine food provision ecosystem service 
ecopotential [ 

7.2.1 Tool description 

Physical, chemical and biological characteristics of seawaters are primary descriptors to assess the spatial and 
temporal dimensions of ecopotential productivity performances in terms of fish vitality, growth and stress. 
Seawater temperature can be considered the fundamental Essential Variable (EV) required for the 
characterization of the fish vitality and consequently the marine food provision potential. Fish growth is strongly 
dependent on the seawater temperature, and this EV is significantly influencing the rate of fish growth. 
 
In addition, seawater temperature influences the variation of many other parameters (others marine EVs) and 
as consequence the entire life cycle of marine organisms, in terms of fish size, metabolism, sex determination, 
growth and population structure (Handeland et al., 2008; Person-Le Ruyet et al., 2004; Pavlidis et al., 2000; 
Sigholt & Finstad, 1990; Tandler et al., 1898; Jonsson et al., 1985). Parameters such as dissolved oxygen (DO), 
salinity level, chlorophyll-a (Chl-a) and nutrient compounds are necessary for an early stage evaluation of the fish 
food provision potential (Soto & Norambuena, 2004; Pitta et al., 2009). 
 
The toolbox presented in this section and shown in Figure 40 identifies suitable fish growth conditions sites 
scenario and estimates the potential annual fish growth by integrating in-situ data, Earth Observation (EO) and 
modeling products (Valentini et al., 2016; Valentini et al., in press). 
EO products allow the spatial and temporal representation of EVs required for the characterization of the fish 
vitality and for the assessment of the distribution of many water quality parameters (Gašparović, 2012; Silió-
Calzada et al., 2008; Filipponi et al., 2015a; Filipponi et al., 2015b), including Sea Surface Temperature (SST) 
(Merchant et al., 2008) and Chlorophyll-a. 
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The toolbox requires the following information in order to integrate the different datasets and generate the 
suitability scenario: 
- sea basin of interest;  
- time period of interest; 
- EVs of interest; 
- fish species for which vitality should be assessed; 
- vitality ranges for the selected fish species related to each considered EV. 
 
Vitality ranges of the selected fish species are associated with the EVs of interest in order to define the threshold 
values for each EV related to fish vitality.  
 
With respect to the datasets, in-situ data can be collected from various sources, for example the EMODnet 
chemistry portal (http://www.emodnet-chemistry.eu) allows to search for in-situ measurement data in the 
European Seas. RS data are pre-processed in order to generate gridded EO products describing the selected EVs. 
A wide range of products describing biological, chemical and physical characteristics of marine seawater can be 
collected from Copernicus Marine Environment Monitoring Service (CMEMS; http://marine.copernicus.eu). 
 
A first preprocessing analysis is done on the input dataset in order to clip the data on the extent of sea basin of 
interest and generate depth-averaged variables, in the case of CMEMS multiple depth layer dataset generated 
using numerical modeling. 
 
The workflow of the assessment is divided in two main steps. 
The first step of the toolbox analyses biologically, chemically and physically relevant seawater parameters to 
verify that values are within the vitality ranges of fish species. The analysis of seawater parameters integrates in-
situ measured data, which accurately describe the temporal trend of the EVs, and spatio-temporal represented 
parameters, in order to identify the existence of exceeding values with respect to the defined species specific 
thresholds. When exceeding values are found from the in-situ measured data, either the existence of site specific 
condition or the presence of persistent seawater conditions not suitable for fish growth should be evaluated. 
The assessment based on spatially represented data evaluates the acceptable locations (pixels) not exceeding 
threshold values for the selected EVs, hence suitable for fish growth. The other locations are masked from further 
investigation. 
 
The second step estimates the potential fish growth rate for the selected fish species for the suitable sites 
identified in the first step. The generated suitability scenario, pictured by a spatial representation of available 
suitable location for fish growth in the selected sea basin, is indeed further in order to estimate the annual fish 
growth for the considered time period. A fish growth equation (reported in Figure 40) is set up with species 
specific fish growth rate coefficients and gives ad result the annual growth in grams. Temporal SST profiles for 
each suitable location (resulting suitability scenario) is used to estimate the average annual fish growth during 
the considered time period. As result a spatial distribution of estimated annual fish growth is generated, for the 
assessment of marine food provision ecosystem service. 
 

http://marine.copernicus.eu/
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Figure 40. Data integration workflow of in-situ, EO products and CMEMS products for the assessment of marine food 
provision ecosystem service.  
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Regarding the CMEMS products, for the assessment of the SST the satellite-derived gap-filled L4 SST maps at 1 
km horizontal resolution, acquired by the infrared sensors of different satellite platforms (Nardelli et al., 2013) 
was selected. Analysis of Chlorophyll-a variable was done for gap-filled (Beckers & Rixen, 2003) monthly data 
estimated using MedOC4 algorithm (Volpe et al., 2007) from remote sensing reflectance (Rrs) spectra 
reprocessed within the ESA Climate Change Iniziative (CCI).  

In-situ data, acquired from European Marine Observation and Data Network (EMODnet) database, were used to 
analyse the existence of suitable conditions for fish growth at high temporal resolution. 

Seawater conditions enable the survival and the growth of the two selected fish species in almost all the 
Mediterranean Sea basin. Locations identified as not suitable for fish growth conditions, and masked from 
further analysis, are those reporting seawater temperature exceeding minimum threshold value of 5°C and 
maximum threshold value of 30°C and reporting a high percentage of annual days of stress temperatures. Other 
areas masked from further analysis (showed in black color in Figure 41 and Figure 42)are those with high salinity 
levels exceeding average value of 40 PSU, average current speeds lower than 0.02 m s-1 or higher than 0.51 m 
s-1, low dissolved oxygen average concentrations, and high nutrients and turbidity levels, mainly due to the river 
discharges and reduced circulation. 
 

 
Figure 41. Estimated annual fish growth for sea bass within the suitability scenario. 

 
Figure 42. Estimated annual fish growth for sea bream within the suitability scenario. 
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As a result of the first step analysis, the toolbox output is a suitability scenario delimiting the area of the study 
basin in which, according to the considered parameters related to fish vitality, fish growth is suitable. 

The sea bass and sea bream estimated annual growth shows the typical latitudinal gradient mostly due to the 
temperature factor in the growth function. Numerical results for the estimated annual fish growth show how 
there are essentially the same gradients in the spatial distribution (Figure 41 and Figure 42). Ecopotential 
productivity as annual growth in grams of sea bream, ranging among 250 and 500 g y-1, is on average higher than 
the that of sea bass, that ranges among 160 and 360 g y-1. The dual biophysical properties behavior detected in 
the analysis makes the two Mediterranean sub-basins differently suitable for food production, especially in terms 
of fish annual growth. 
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