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1. Executive summary 

Ecosystem models are fundamental tools to achieve a deeper understanding of the spatiotemporal dynamics of 
both marine and terrestrial environments. The development of mathematical models reproducing variables 
describing an ecosystem is useful to pursuit several different tasks, from improving the monitoring of the system 
filling the spatiotemporal gaps that are frequently present in the measured data to computing short- and long- term 
forecasts of the system dynamics, from assessing the uncertainty associated with the observations to evaluating 
the system response under different management strategies. Two major approaches to build the computational 
core of available models can be identified. Models in the first group are based on the statistical relationships 
between the simulated variables and the climatic and environmental measurements, also called predictors. Species 
Distribution Models (SDMs) and niche models are among these data-driven models. The second group of models is 
based on the reproduction of the physical processes governing the system, thus computing the output by 
processing the observed environmental data through dynamical equations, referred to as process-based models.  

The complexity of natural ecosystems pushes toward the development of models that consider several levels of 
environmental predictors and interplaying mechanistic processes. For example, the dynamics of marine ecosystems 
descends from numerous interactions between multiple entities such as nutrient concentrations, solar radiation, 
primary production, and hydrodynamic processes [1]. An accurate mathematical description of these complex 
systems requires the consideration of diverse parameters and functions, as well as careful calibration and validation 
of the model [2]. Process-based ecological modelling of marine and terrestrial environments often relies on the 
simultaneous use of different models, which combined are able to reproduce the main ecosystem features and 
account for the wide array of parameters, including hydrodynamic, morphological, and ecological components 
relevant to an ecological assessment [3]–[5]. Thus, the setup of an ecosystem model requires the accurate 
spatiotemporal characterization of the ecosystem under study by way of past and present environmental 
measurements, which are fundamental to accurately characterize the input and forcing data, model predictors, as 
well as initial conditions. The need for the assimilation of environmental measurements is further intensified by the 
diversity of indicators that are related to the ecosystem dynamics in conjunction with the more refined spatial and 
temporal resolution typically required to tackle increasingly complex questions posed by researchers, managers 
and stakeholders [5]. Since collecting in-situ data proves quite time-, cost-, and labour-intensive, it is recommended 
to exploit the ever-expanding list of ready-to-use RS data products.  

RS products estimating climatic data, such as precipitation, air temperature, radiance, soil and water surface 
temperature, together with information on land cover and use, and the estimation of canopy properties, constitute 
crucial information that can be incorporated into ecological models at different stages of the modelling process 
(see Figure 1). Inspired by the seminal work of Plummer [6], the present deliverable D6.1 focuses on analysing how 
RS-data have been used in the literature to: 

1. Improve the spatial description of marine and terrestrial variables, with particular attention to the useful 
predictors for SDMs (Section 2). In this context, we performed a qualitative literature review to analyse 
some important aspects that ecologists must consider when combining RS products with models for local 
applications, which included: 

- An overview of the available RS-based climate datasets of temperature, precipitation and radiance 
(e.g., TRMM, PERSIANN-CDR, and Heliosat (SARAH)) and their possible downscaling for local ecological 
models requiring spatial resolutions higher than 1 km (Section 2.1, main contributors: CNR, FORTH). 

- The review of the approaches available in the literature to compute RS-based ecological products 
(Sections 2.2 - 2.4 main contributors: CERTH, FORTH). 

- An analysis of the RS products to guide SDMs at local scale (Section 2.5, main contributors: EBD-CSIC, 
FORTH) with applications of multi-sensor/multi-platform approaches (Section 2.6, main contributor: 
UFZ). 

2. Assess the reliability of spatially-distributed model outputs, thus validating the model results. This is a 
fundamental step in the development of ecological models, where the comparison with in-situ data might 
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be inappropriate due to local heterogeneities and model resolution. Here, D6.1 reviewed how ecological 
models outputs have been compared to RS data, with the goal to analyse the possible strategies available 
to link EO data and ecological models (Section 3, main contributors: EPFL, ICETA-INBIO, POLIMI). 

3. Analyse model forecast and reduce their uncertainty through data assimilation (DA) techniques. When 
performing real-time applications, RS data are essential to operationalize ecosystem models through the 
use of DA [7]. The incorporation of RS products into ecological models through suitable DA techniques 
typically results in a drastic improvement of model results, reduction of model uncertainty and, thus more 
reliable forecasts of the system dynamics. Section 4 describes the main DA techniques presented in the 
literature and their applications for ecological purposes, identifying the DA platforms that are currently 
available to the modeller community. Particular attention has been dedicated to the limitations of these 
DA techniques, in particular to the description of the model and measurement uncertainties (main 
contributors: DELTARES, EPFL). 

 

 
Figure 1   Schematic representation of the steps required when modeling the spatiotemporal variability of ecosystem variables, 
here represented by the suspended particulate matter (SPM) over the North Sea (see [8], [9]). EOs provide useful information 
at three levels of the modelling workflow: 1) EOs are input of the ecosystem model; 2) EO can be used to calibrate model 
parameters and in the validation phase, thus giving a feedback to the modeler; 3) during the operational forecast, the 
assimilation of EOs corrects the model prediction and reduce its uncertainty (maps from [8], [9]). 
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Table 1 Abbreviation and acronyms 

AMSRE-E Advanced Microwave Scanning Radiometer on the Earth Observing System 
ANN Artificial Neural Networks 
ASAR Advanced Synthetic Aperture Radar 
ASCAT Advanced SCATterometer 
ALOS Advanced Land Observing Satellite 
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 
AVHRR Advanced Very High Resolution Radiometer 
BI Brightness Index 
BRDF Bidirectional Reflectance Distribution Function 
CASA Carnegie-Ames-Stanford Approach 
CAI Cellulose Absorption Index 
CCSM Advanced Very High Resolution Radiometer Model 
CMAP Climate Prediction Center Merged Analysis of Precipitation 
CMR Clay Minerals Ratio 
CI Crust Index 
CN Carbon-Nitrogen model 
ColI Coloration Index 
CRU Climatic Research Unite  
DAAC Distributed Active Archive Centre 
DART Data Assimilation Research Testbed 
DEM Digital Elevation Model 
DGVM Dynamic Global Vegetation Model 
ED2 Ecosystem Demography Biosphere model version 2 
EO Earth Observations 
ECMWF European Centre for Medium-Range Weather Forecasts 
EnKF Ensemble Kalman Filter 
EOF Empirical Orthogonal Function 
ERS European Remote Sensing 
EVI Enhanced Vegetation Index 
EURO4M European Reanalysis and Observations for Monitoring project 
ET Evapotranspiration 
FAPAR/FPAR Fraction of Absorbed Photosynthetically Active Radiation 
FCover Fraction of Vegetation Cover 
FMR Ferrous Minerals Ratio 
GMED Global Marine Environment Dataset 
GMMS Global Inventory Modelling and Mapping Studies 
GORT Geometric Optical Radiative Transfer model 
GPCC Global Precipitation Climatology Centre 
GPCP Global Precipitation Climatology Project 
GPM Global Precipitation Measurement 
GPP Gross primary production 
HDVI Hybrid Difference Vegetation Index 
HLS Harmonized Landsat-Sentinel-2 project 
KF Kalman Filter 
IOR Iron Oxide Ratio 
LAI Leaf Area Index 
LIDAR Light Detection and Ranging 
LPJ Lund-Potsdam-Jena model 
LSM Land Surface Model 
LST Land Surface Temperature 
LUT Look Up Tables 
MARSPEC Ocean Climate Layers for Marine Spatial Ecology project 
MERRA Modern-Era Retrospective Analysis for Research and Applications 
MIMICS Michigan Microwave Canopy Scattering model 
MISR Multi-angle Imaging SpectroRadiometer 
MODIS Moderate Resolution Imaging Spectroradiometer 
NDII Normalized Difference Infrared Index 
NDLI Normalized Difference Lignin Index 
NDVI Normalized Difference Vegetation Index 
NDWI  Normalized Difference Water Index  
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NIR Near Infrared 
NPP Net Primary Production 
NSE Nash-Sutcliffe Efficiency 
OB Ocean Biology 
OpenDA Open Data Assimilation 
OpenMI Open Model Interface 
PALSAR Phased Array type L-band Synthetic Aperture Radar 
PCC Phytoplankton Community Composition 
PDAF Parallel Data Assimilation Framework 
PDF Probability Density Function 
PFT Phytoplankton Functional Types 
PFZ Potential Fishing Zones 
RI Redness Index 
RMSE Root Mean Squared Error 
RPV Rahman-Pinty-Verstraete model 
RS Remotely sensed 
RTnLS RossThin‐LiSparseReciprocal model 
SAIL Scattering by Arbitrary Inclined Leaves model 
SAR Synthetic Aperture Radar  
SAVI Soil-Adjusted Vegetation Index 
SEVIRI Spinning Enhanced Visible and InfraRed Imager  
SIF Solar-Induced chlorophyll Fluorescence 
SMOS Soil Moisture Ocean Salinity mission 
SOM Soil Organic Matter 
SPM Suspended Particulate Matter 
SST Sea Surface Temperature 
SSS Sea Surface Salinity 
SWH Significant Wave Height 
SWI Soil Water Index 
SWIR Short-wavelength infrared 
TM Thematic Mapper 
TGI Triangular Greenness Index 
TRMM Tropical Rainfall Measuring Mission  
VegDRI Vegetation Drought Response Index 
VHR Very High Resolution 
VI Vegetation Index  
VIS Visible  
WDVI Weighted Difference Vegetation Index 
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2. Remotely sensed products as drivers and predictors of ecological models 

D. Pasetto1, J. Bustamante2, A. F. Cord3, N. Chrysoulakis4, A. Dittrich3, C. Domingo5, A. Karnieli6, G. Kordelas7, I. 
Manakos7, E. Palazzi8, D. Poursanidis4, S. Terzago8, G. Ziv9 

1Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Switzerland 
2Estación Biológica de Doñana, Spanish National Research Council, Spain 
3Department of computational Landscape Ecology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany 
4Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Greece 
5CREAF, GRUMETS Research Group, Bellaterra, Barcelona, Spain 
6Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel 
7Information Technologies Institute, Centre for Research and Technology Hellas, Greece 
8Institute of Atmospheric Sciences and Climate, National Research Council, Turin, Italy 
9School of Geography, University of Leeds, UK 

 

Spatially-distributed ecological models for both terrestrial (e.g. SDMs, hydrological models, dynamic global 
vegetation models, carbon cycle models, …) and marine (hydrodynamic models, biogeochemical models, sediment 
transport models, …) applications require the accurate spatiotemporal characterization of the ecological system 
under study. Climatic data such as precipitation, air temperature, radiance, and soil surface temperature, together 
with information on land cover and use, and the estimation of canopy properties constitute crucial inputs for setting 
the initial conditions and dynamical forcing of ecological models. As highlighted by Plummer [6] at the beginning of 
the century, satellite based RS data have been of fundamental importance for the estimation of these system 
features, guaranteeing a global spatiotemporal coverage, long-term surveillance missions and since some years 
ago, for many missions (Landsat, Sentinel 1 and 2, Aqua, Terra, TRMM,…), free data access.  

While several global process-based models are nowadays driven by RS data, especially in the field of climate 
forecasting, vegetation phenology and oceanography, the potentialities of combining ecological models and RS data 
for real-time monitoring and forecasting at local and regional scales are yet to be fully exploited.  For example, 
vegetation indices (VIs), in particular the Normalized Difference Vegetation Index (NDVI), designed to allow spatial 
and temporal inter-comparisons of terrestrial photosynthetic activity and canopy structural variation, provide 
essential information to address a variety of research questions in ecology (see [10] and references therein). Many 
applications (e.g., modelling ecosystem dynamics), however, require such information at very high spatial and 
temporal resolution. This is certainly true in the case of the elaboration of vegetation maps based on RS data, a 
common area of research, in which, at least from a local perspective, it has been possible to use medium-resolution 
RS products since the launch of the Landsat-1 satellite in 1972. A simple search in Scopus with the term "vegetation 
map*" produced 3420 documents, of which 52% included terms related to RS data1, and 22% included terms related 
to medium and high-resolution sensors (Landsat, MODIS, LIDAR). A similar search with "Species distribution 
model*", a topic that has received considerable attention in the ecological modelling scientific literature and that 
in general is quite specific and included in keywords, results in 3352 documents, but only 5% of these include terms 
related with RS data and less than 2% include terms related to medium or high resolution products. 

In the literature, applications of RS data to terrestrial ecosystem models include the use of RS-derived maps of 
vegetation, land cover and land use into process-based models to improve estimates of primary production, for 
example through the Lund-Potsdam-Jena (LPJ) model [11], the Boreal Ecosystem Productivity Simulator (BEPS) [12], 
[13], and the Community Land Model (CLM) [14]. Coupled hydrological and vegetation models are frequently 
constrained by RS-based estimates of evapotranspiration, precipitation, soil moisture and snow cover to improve 
the system hydrological response (e.g. [15]–[18]), specially complex in semi-arid environments [19]. Nowadays RS 
VIs are becoming more and more used in SDMs (e.g., [20]–[23]) and in drought monitoring and forecasting on 
vegetation [24] for instance using the Vegetation Drought Response Index (VegDRI) [25] or the Vegetation Outlook 
[26]. 

                                                

1 Research performed on 4 May 2017, with the terms “Remote sensing” or “Landsat” or “MODIS” or “AVHRR” or “LAI” or 
“NDVI” or “EVI” or “SAVI” or “LiDAR” or “SAR” or “Radar” or “Sentinel” or “SEVIRI”. 
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For marine ecosystems, the input required in marine models can range from wind velocities, atmospheric 
deposition of nutrients, wave height, a range of initialization conditions, and boundary fluxes; these are often as 
important as the numerical solvers which form the basis of process-based models [27]. Modellers often contend 
with interpreting spotty or extremely coarse data in order to introduce realistic boundary and forcing conditions 
for given model space, leading to the introduction of a substantial level of uncertainty into the model outputs [28]. 
Some of these boundary conditions can be generalized using averages or interpolations from long-term data sets 
and extrapolating system trends; however, increased measurement coverage would enhance the quality of such 
elements [29]. Alternatively, additional boundary information can be extracted from new sources of EO information 
and therefore can contribute to improving the model output. As highlighted by the detailed Klemas’ review [30] 
about marine variables detectable from RS applications, several products are available on long temporal scales 
thanks to the longer-lived satellite programs (e.g. MODIS), with high resolution products being developed from the 
more recent missions (e.g. Sentinel-2 and Sentinel-3). This piece of information is essential when planning hind-
casting activities, enabling one to ensure the availability of data with adequate temporal and spatial resolution, as 
well as forming the foundation for the planning of real-time operational or forecasting systems in the context of 
current and future planned satellite missions. An example of application is the use of RS measurements of SPM as 
input variable for various process-based ecological models which investigate primary and secondary production as 
well as nutrient cycling such as Delft-3D-GEM [31], MIRO&CO-3D, or ECO_MARS3D [32]. 

Although the availability of satellite-based Earth Observation (EO) data opens a wide range of possibilities for 
ecosystem modelling, some factors are still restricting research advances. This section analyses the following 
important topics that ecologists must consider when combining RS products with models for local applications: 

1. Climate products and downscaling: while global RS climate datasets of temperature, precipitation and 
radiance exist (e.g., TRMM, PERSIANN-CDR [33], and Heliosat (SARAH) [34]), they are at resolutions that 
vary from 0.05 degree (about 5km at the equator) to 0.25 degree (27 km at the equator), which is still 
coarse for many local applications. In fact, ecological models at local scales usually require data at a spatial 
resolution higher than 1 km. Thus, the use of adequate downscaling techniques is in some cases mandatory, 
especially in mountain environments and in spatially-heterogeneous areas with regional to local climatic 
regimes affected by complex topography.  

2. RS-based ecological products: several terrestrial and marine properties can be estimated from RS optical 
and radar data, and, thus, linked to the input components of ecological models. Modellers should be aware 
of the range of approaches available in the literature to translate the measured radiation in the input 
parameters for the model, their associated accuracy and the RS data required.  

3. RS data as predictors of SDMs: RS products have been used to feed SDMs for both terrestrial and marine 
applications. For these goals, the use of multi-sensor/multi-platform approaches generating radiometrically 
homogeneous time series of data represent a crucial step to overcome some limitations of RS data, such as 
the scarcity of long time series (e.g., AVHRR, which started in 1981, requires a lot of pre-processing, few 
LANDSAT products are available since 1972, while MODIS series started only around 2000) and high 
temporal resolution (e.g. Landsat revisiting period is 16 days, Sentinel-2 revisiting period has been of 12 
days up to now, but will improve to 5 days when combined with the data from Sentinel-2B).  

2.1 Climate products and downscaling 

Atmospheric data and climate variables are the main driving factors of most terrestrial ecological models, since 
they directly reflect the seasonality of the system and long-term trends, and they help quantifying the entity of 
extreme events. Several studies have been devoted to improve the estimation of surface climate variables from RS 
data, and the most relevant products are nowadays available in many repositories at a global scale with a near real-
time release. For example, the Global Precipitation Measurement (GPM) project regularly issues near-real-time 
precipitation estimates. Land surface temperature/emissivity (LST), cloud cover [35], [36], and surface reflectance 
[37] can be obtained from MODIS database.  Other climate products that can be estimated starting from MODIS 
reflectance data are the solar and net radiation [38],  surface solar irradiance [39], relative humidity [40], surface 
water pressure and air temperature [41].  Potential and actual Evapotranspiration (ET) are key parameters for the 
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characterization of the water cycle, and has been estimated following different approaches, such as involving 
surface temperature and vegetation indexes from MODIS [42], [43].    ET estimates from 2000 to 2010 are available 
in the MODIS website, but at a coarse resolution. Ke et al. [44] proposed a possible approach to downscale MODIS 
ET products from 1 km to 30 m resolution using machine learning and data fusion techniques, maintaining a good 
agreement with in-situ measured ET.  

In the following we focus our attention on the estimation of precipitation and LST. 

2.1.1 Precipitation  

Precipitation is one of the most dynamic components of the climate system and plays a key role in matter and 
energy exchange in Earth’s water, atmosphere, and soil cycles. The amount of precipitation influences soil moisture, 
vegetation growth, and stream flow [45], [46] and quantifications of it are essential. Conventional ground 
measurements and RS estimates are two ways to accomplish this task. On the one hand, spatial interpolation of 
precipitation data from irregularly spaced weather stations is frequently used to obtain spatially continuous, 
gridded dataset. When available at a regional scale, as the Digital climatic atlas of the Iberian Peninsula [47], these 
datasets achieve a resolution lower than 200 m,  while at global scale the resolution is about 1 km. Examples of 
rainfall datasets are DAYMET, PRISM and WorldClim, which have been compared in [48] as well as Chealsa, which 
is a satellite-based dataset [49]. Note that, especially at a global scale, the average distance among the surface 
stations used in gridded datasets such as WorldClim is much larger than 1 km, so the dataset resolution is derived 
by downscaling the data from a coarser grid through strong statistical assumptions (for example based on the 
relationship between precipitation and elevation) that can be satisfied locally but not necessarily globally. As a 
consequence, the reliability of such datasets depends on the density of surface observations, and it can be poor in 
areas where the network is sparse, mainly natural regions with difficult accessibility, far from urban and agricultural 
environments, and restrict temporal availability. In addition, datasets such as WorldClim provide only the average 
climatology on a give multi-annual time window, and they do not provide any information on temporal variability. 
On the other hand, satellite rainfall measurements are designed to cope with this limitation and can be used to 
generate spatially continuous precipitation datasets over large areas. A range of global and regional precipitation 
databases including rain gauge stations, satellites, and other observations exist, such as the merged in-situ and 
satellite Global Precipitation Climatology Project (GPCP) [50] providing data from 1979 until 2015 and its 
continuation, the Climate Prediction Center Merged Analysis of Precipitation (CMAP) [51] extending from 1979 to 
present; the Global Satellite Mapping of Precipitation Project [52], the Tropical Rainfall Measuring Mission (TRMM) 
which has been offering several rainfall products since 1997 with the first spaceborne precipitation radar [50], [53].  

Among the main problems of satellite-based rainfall data products is the spatial heterogeneity, given that different 
satellites are used at different latitudes (i.e. GPCP or CMAP), and their generally coarse resolution (most of them 
around 2.5 deg – about 280 km at the equator); up to 2014 the TRMM datasets (http://trmm.gsfc.nasa.gov/) had 
one of the highest resolutions (up to 0.25 deg for the 3B42 and 3B43 products) available when referring to satellite-
based rainfall products. TRMM is currently being replaced by the Global Precipitation Measurement (GPM) mission 
providing satellite precipitation data since 2014 at the resolution of 0.1 deg (about 11 km at the equator), together 
with a temporal frequency of three hours and a latency of 18 hours [54]. As GPM datasets were not available before 
2014, several studies have been done in order to downscale the coarse precipitation data, for instance from TRMM 
products, using statistical or geostatistical methods and obtain high-resolution rainfall data [46], [55]–[60]. These 
methods use classic geostatistical analysis (interpolation methods using IDW, kriging, splines, etc.) and may include 
additional information from covariates, i.e. variables that are available at higher spatial resolution and explaining 
part of the spatial variability of the precipitation field. Typical covariates are RS geospatial variables like the 
vegetation indices (e.g., the normalized difference vegetation index, NDVI), the elevation or other parameters 
extracted from the Digital Elevation Models (DEMs) of the area or in-situ weather data. Small-scale precipitation 
data generated with these techniques can achieve spatial resolutions around 1 km or finer. Modellers have to keep 
in mind that, for precipitation, traditional statistical downscaling is less successful than for other variables like the 
temperature and other kinds of interpolation techniques are inadequate. Given the large spatial and temporal 
variability and high intermittency of precipitation fields, a particularly suited approach relies on stochastic methods 
instead (e.g., [61]). Stochastic downscaling aims at generating synthetic spatiotemporal precipitation data whose 

http://trmm.gsfc.nasa.gov/
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statistical properties are consistent with the small-scale statistics of observed precipitation (known from e.g., radar 
measurements), based only on the knowledge of the large-scale precipitation field, either produced by a global or 
regional model or derived from coarse-scale observations such as satellite measurements. This approach has been 
proved successful in a climatological framework [62] where precipitation data from a hydrostatic regional climate 
model have been downscaled with the stochastic rainfall downscaling method called RainFARM  [63] and compared 
to in-situ observations from a network of rain-gauge stations in the Piedmont and Valle d’Aosta regions (north-
western Italy). Stochastic precipitation downscaling with possibly an orographic correction implemented can 
potentially improve the poor representation of the precipitation obtained from coarse resolution datasets and 
helps end users to assess the likely eco-hydrological/surface impacts of climate change.  

Even if the majority of the original or the downscaled TRMM products have been primarily used as input to 
hydrological models [64], [65], such techniques have been employed also in in-situ data derived meteorological 
modelling [47] and ecological modelling, for example for SDMs [20].  

Recent examples in this domain (e.g., [21], [49], [66]) show that RS rainfall data can provide a better insight when 
modelling the relationship between species and climate, despite the coarser resolution and shorter time period 
(e.g. 1998 – 2016 for TRMM) than other climatology such as the WorldClim database (1950 – 2000). Indeed, one of 
the aspects that have favoured the use of RS products and datasets in the past years has been their regular update, 
which allowed to promptly capture changes in climate. For instance, the WorldClim database provides the monthly 
climatology averaged over a 30-year long time period in the past (1961-1990) and two 20-year long time periods in 
the future (2041-2060 and 2061-2080) of a given set of climate variables and bioclimatic indices, but is not regularly 
updated. Contrary, RS-climate based products take advantage of cloud computing infrastructures being much 
easier to provide update datasets in a regular base as well as to provide products meaningful for the ecology, 
physiology and other factors that promote the niche of certain species or biogeochemical cycle. Today, most 
station-based datasets, such as the Climatic Research Unit (CRU), the Global Precipitation Climatology Centre 
(GPCC), the E-OBS gridded dataset, and the European Reanalysis and Observations for Monitoring project 
(EURO4M), have filled this gap with respect to RS data by connecting the weather stations to the servers and 
automatically obtaining continuous time coverage and regular updates. 

When using satellite precipitation products the modellers should be aware of the errors related to these datasets. 
The recent study of Maggioni et al. [67], for example, analysed systematic and random error components of the 
TRMM precipitation, highlighting their dependence with the rainfall rates, and suggesting that future satellite bias 
adjustment procedures should account for this dependence.  

2.1.2  Land surface temperature (LST)  

LST is an important parameter that is highly responsive to surface energy fluxes and has become valuable to many 
disciplines, in particular for ecological modelling. Acquisition and monitoring of LST over extensive areas in a 
repetitive way was a complex challenge until the first EO research programs appeared. Satellite-based EO 
measurements allowed for a global spatial coverage for LST, but, as a result of the resolution trade-offs involved in 
using satellite data, the acquisition of satellite LST at high spatial and temporal resolutions is almost unfeasible as 
of today. This low spatial resolution results in a thermal mixture effect, where the resolution cells are larger than 
the thermal elements. Several attempts have struggled with the implementation of synergistic downscaling 
algorithms in order to achieve a high spatial and high temporal resolution [68]–[71]. MODIS and AVHRR are two 
satellite based LST sources which have been used for several modelling purposes like SDMs [72], [73]. The spatial 
resolution of LST product from AVHRR is 1.1 km while MODIS has several products from 1 km (MOD11A1 and A2) 
to 0.05 degree (about 5 km, MOD11C1, C2, and C3) depending on the user’s needs for the analysis and modelling. 
As such, both sensors’ data have been used in many case studies for analysis limited to a specific time window [74]–
[76]. Additionally, MERRA (Modern-Era Retrospective Analysis for Research and Applications), and AMSRE-E 
(Advanced Microwave Scanning Radiometer on the Earth Observing System) are other two sources of land surface 
temperature at a coarser resolution (from 5 km to 56 km) that also are used in species distribution modelling ([21], 
[66] and references therein). In recent years, several attempts have been done to obtain LST at higher spatial 
resolutions (e.g., 30 m) maintaining the high temporal resolution of MODIS and AVHRR (4 and 1 times per day, 
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respectively). This is the so called LST downscaling approach [68], [77], which in this discipline is often viewed as 
equivalent to other terms such as sharpen [69], [78], [79] or disaggregate ([70], [71] and references therein). 
Although slight differences in the meanings of these terms may exist, all have the same objective, which is to 
enhance LST to a higher spatial resolution, while maintaining invariant the thermal radiance. Downscaled LST is a 
demanding product in terms of computation and accuracy assessment that is widely used in studies in the urban 
environment ([48] and references therein). However, LST derived directly from sensors like Landsat or ASTER,  
which are considered having a high spatial resolution, have been sparsely used in SDMs probably due to its low 
temporal resolution and to the fact that, for many species, air temperature is a predictor having higher correlation 
than LST with respect to the species presence. An example of SDM using LST is presented by Rödder et al. [80]  
where LST derived by Landsat is used as predictor in a SDM for sand lizards. 

Finally, we would like to stress here that satellite LST measurements may differ by several degrees from near-
surface air temperatures measured by surface stations [81].  Databases providing air temperature at the global 
scale include WorldClim [48], which relies only on in-situ data, CRU [82], which generates a combination approach 
of in-situ and RS data, and others. The EUSTACE project (https://www.eustaceproject.eu) is currently developing 
an approach to estimate near surface air temperature from satellite observations. 

2.2 Recent remote sensing methods estimating leaf and canopy properties 

Assessing the key parameters describing how soil and vegetation are contributing to surface photosynthesis, 
evapotranspiration, and net primary production over the domain is of crucial importance for terrestrial process-
based models in order to compute energy, water and carbon fluxes, and biogeochemistry of vegetation, and for 
defining the biophysical predictor variables in SDMs. Most land surface models describe the spatial heterogeneity 
of the domain by subdividing the grid cells into different categories derived from land cover and land use maps. 
Then, different soil properties and parameters describing plant functional types are assigned to each category (see 
e.g. [83]). Another possible approach is to continuously characterize the vegetation based on its radiative response.   
Several RS products related to vegetation are directly available with a global coverage in many repositories. For 
example, MODIS provides estimates of LAI and Fraction of Absorbed Photosyntetically Active Radiation (FAPAR) at 
a resolution of 500 m and frequency of 8 days from 1999 to present. Similarly, thanks to SPOT-VGT (from 1998 to 
2015) and PROBA-V (from 2013 to now) missions, also Copernicus Global Land Service computes LAI, FAPAR, 
fraction of vegetation cover (FCover) and other VIs at resolutions of 1 km (1999-2013) and 300 m (2014-now).  
Although these products have the clear advantage of passing an external quality control, their resolution might not 
be suitable to achieve the desired accuracy especially for local applications, thus forcing the modeller to research 
different alternatives.  This section provides a review on recent approaches estimating biophysical and structural 
properties of vegetation, such as leaf and canopy properties using RS data at high spatial resolution. The reviewed 
methodologies have been subdivided into empirical, physically-based and semi-empirical approaches. To 
summarize the collected references, Table 2 provides an overview of the cited approaches. The references have 
been categorized according to the type of approach and the considered leaf/canopy property. This table gives per 
cited approach: (a) the sources of remote sensing data, (b) (when available) the performance/ accuracy divided into 
0-25%, 25-50%, 50-75%, 75-100% quartiles (i.e. when a method has coefficient of determination 0.67 the 
performance is assumed to fall within the 50-75% quartile). The metrics usually adopted for estimating a model’s 
accuracy are the Root Mean Square Error (RMSE) and the coefficient of determination (r2) between the observed 
biophysical values and those predicted by the model. A symbol is added next to an approach, when auxiliary data, 
other than RS data, is used as input. 

2.2.1 Empirical approaches 

Empirical models directly link EO data with the biophysical variables of interest. In specific, the mathematical 
relationship (linear or non-linear) between the ΕΟ data and the biophysical variable is established by applying a 
function that minimizes the error between the modelled biophysical variable and the in-situ measured data [84]. 

https://www.eustaceproject.eu/
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Various empirical approaches to identify leaf and canopy properties from RS data have been proposed in the 
literature, including estimations of both biophysical parameters as water content, nitrogen, chlorophyll content 
and solar-induced chlorophyll fluorescence (SIF) and vegetation indices (VI) as NDVI. 

RS derived VIs are some of the oldest tool in remote sensing to provide vegetation parameters. For instance, 
significant effort on estimating leaf and canopy water from RS data has been spent developing multispectral indices 
and establishing empirical relationships based on regression analysis with water content [85]–[89]. Among the 
many variations that exist, the most commonly used indices include NDVI [87], [89], normalized difference water 
index (NDWI) [87]–[90], and normalized difference infrared index (NDII) [85]–[88], [91]. A related index that 
quantifies the stress of plants to drought and wetness is the Moisture Stress Index (MSI) [92]. Numerous VIs 
exploited for monitoring LAI have been compared in [93]–[95]. The results in [93], [95] show that red-edge VIs are 
among the most efficient indices for estimating LAI. Red-edge bands have been also used to estimate chlorophyll 
[93], [96], foliar and canopy nitrogen [97]–[99]. Other recent approaches estimate canopy nitrogen using 
hyperspectral data from leaf or canopy surfaces [100], [101]. Indices estimated from broad bands at visible 
wavelengths, such as the triangular greenness index (TGI) [102], [103], are also used to estimate chlorophyll 
content. During the last years, it was proposed that SIF could be estimated by filling-in of near-infrared solar lines 
[104], [105] using data acquired from GOSAT satellite instrument. However, this instrument provides data in coarse 
spatial resolution and therefore SIF cannot be estimated yet at local scale. 

The main sources of RS data, in the mentioned empirical approaches, are the MODIS [87], [95], Landsat [85], [86], 
[89], [95], [102], ASTER [85], AWiFS [85], RapidEye [94], [97], and Sentinel-2 [96], [99] satellite imagery and the AISA 
[93],  AVIRIS  airborne imagery [102], [103] (see Table 2). 

The uncertainty associated with these products is still an unresolved matter. Uncertainty models for quantitative 
data derived from RS are slowly emerging. The representation of error and uncertainty information in data is 
essential and there are several approaches (based on parameter estimation, error propagation, etc.) being 
discussed (see Section 4.3). 

Unfortunately, empirical models require extensive field measurements for calibration and the modelling results are 
site condition, time period and sensor dependent, thus constraining their applicability to other sites specific [106]. 
However, their reduced computational cost makes them an appreciated asset. 

2.2.2 Physically-based approaches 

Physically-based models attempt to describe the transfer and interactions of radiation inside the canopy based on 
physical laws and offer an explicit connection between the vegetation biophysical variables and canopy reflectance 
[107]. A strong advantage of physically-based models with respect to empirical models is their adaptability to a 
wide range of land cover situations, time periods and sensor configurations, while at the same time they do not 
require in-situ data to be acquired simultaneously with the EO data. Throughout the literature, physical models are 
validated and fine-tuned using field measurements in order to improve their accuracy with respect to real world 
conditions [108].  

Recent efforts focus on the application of model inversion approaches for estimating plants biophysical parameters 
using remote sensing data.  This is the case of [109]–[116], which invert the PROSAIL model [117], a popular leaf 
and canopy reflectance model combining the PROSPECT [118] and SAIL [119] models. Likewise, the recent REGFLEC 
model [120], combining PROSPECT, ACRM [121] and 6SV1 [122], has been also inverted in the literature [14], [120], 
[123]. Besides, three-dimensional models, such as DART [124], can be considered for cases where the canopy is 
heterogeneous and discontinuous. The DART model is inverted in [125], [126]. Reader could refer to the work in 
[127] (generated within the framework of the radiation transfer inter-comparison activity), which assesses the 
reliability of various canopy reflectance models to simulate the radiative properties of testing canopy scenes, to 
gain an overview on recent models. Most common techniques, for inverting canopy reflectance models using RS 
data, include numerical inversion procedures; look up tables (LUT) and artificial neural networks (ANN). Traditional 
inversion approaches iteratively refine physical model parameters, relying on optimization algorithms, such as the 
quasi-Newton algorithm [128], until the modelled reflectance resembles the measured one. LUT contain pre-
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computed canopy biophysical parameter values for a given set of reflectance, and then, for a new data it 
interpolates among these pre-computed points. The forward mode method is an approach for computing the initial 
points in LUT [129]. On the other hand, ANN methods, such as the forward back propagation neural network [81], 
use a training set of data to learn the optimal relationship between canopy biophysical and structural input 
parameters and the output reflectance. 

Leaf and canopy water content can be estimated using numerical inversion procedures [110], LUT [110], [111], and 
ANN [109], [130], as well as chlorophyll content of the leaf and/or at canopy level which can be estimated using 
LUT [14], [112], [113], [120], [123], [125], [131] and ANN [115]. Concerning the estimation of LAI, several methods 
use LUT [14], [112], [114]–[116], [120], [123], [126], [131] and ANN [112], [116].  

The aforementioned physical approaches have performed model inversion based on remote sensing data from 
MODIS [114], Landsat [14], [113], [126], ASTER [114], RapidEye  [112], Sentinel-2 [115], MERIS [131], LISS-3 [116], 
SPOT [123], and CHRIS/PROBA [125], [130] satellite imagery and the HyMap [111], MIVIS [110], and AVIRIS [126] 
airborne imagery (see Table 2) 

2.2.3 Semi-empirical approaches 

Semi-empirical models utilize aspects of both physical and empirical models. Specifically, they rely on some 
theoretical formulations derived from physical models, where several of the parameters are adjusted using 
empirical data (i.e. EO data).  

This is the case of the semi-empirical bidirectional reflectance distribution function (BRDF) models, which have been 
used in the literature to estimate canopy height and canopy structure. Colgan et al. [132] fused LiDAR and 
hyperspectral data to estimate the spatial distribution of plant species in savannas and the semi-empirical Ross-Li 
BRDF model was applied to increase the accuracy of species prediction. Su et al. [133] stated that BRDF model 
parameters obtained by the inversion of the Rahman-Pinty-Verstraete (RPV) and the RossThin‐LiSparseReciprocal 
(RTnLS) models against MODIS and the Multi-angle Imaging SpectroRadiometer (MISR) data products are useful in 
increasing the accuracy of estimating canopy structure, especially in semi-arid environments. The study in [134] 
retrieves forest canopy height through inversion of a simple geometric-optical model with MISR data. However, in 
[134] prior to inversion, soil understory background contribution is partly isolated using the Li-Ross BRDF model. 
The semi-empirical CLAIR model was used in [135] to establish the relationship between the Weighted Difference 
Vegetation Index (WDVI) index and LAI, so as to derive time-series of LAI. The work in [136] estimates the LAI in rice 
crops from SAR backscattering data using a semi-empirical model based on the the Michigan Microwave Canopy 
Scattering (MIMICS) model. A semi-empirical method to retrieve understories NDVI for sparse boreal forests from 
MODIS BRDF data is proposed in [137] and evaluated in [138]. Understory NDVI is useful for improving the 
estimation of overstory LAI. Since semi-empirical methods rely on empirical data to reduce the complexity of 
physical models, partial calibration may be required in order to apply these models to different conditions. 

The review presented in this section confirms that there is a wide field of approaches dedicated to the estimation 
of soil, canopy and leaf properties using satellite and airborne imagery. These approaches can be useful for the 
detection of stress in vegetation and ecosystem degradation. Future satellite missions, providing imagery at higher 
spatial, spectral, and temporal resolution, are expected to favour the performance of these approaches. For 
instance, after so many years, the first EO system fully dedicated to monitor and quantify the impact of drought 
and its side-effects on natural ecosystems, the ECOSTRESS, has delivery date by 2018. The ECOsystem Spaceborne 
Thermal Radiometer Experiment on Space Station [139] will provide critical insight into plant-water dynamics and 
in how ecosystems change with climate. 

2.3 Remote sensing and spectroscopy of soils 

The characterization of soil properties and composition is relevant for both agricultural and hydrological 
applications. RS data have been useful to provide complementary spatial information to the geostatistical analysis 
based on in-situ data. Among the products of interest we recall soil moisture, albedo, soil texture [140], and indices 
related to organic and inorganic matter, as described in the recent review work of Mulder et al. [141]. 
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2.3.1 Soil moisture 

Despite its high spatial heterogeneity and the possible disturbance caused by the presence of vegetation, soil 
moisture up to a depth of 3-5 cm can be estimated over large grid cells from RS data, providing useful information 
for hydrological models. For example, the Soil Moisture Ocean Salinity (SMOS) mission measures soil moisture since 
2010 with a relatively high accuracy (4% standard deviation) but a coarse spatial resolution of about 35-50 km. the 
Soil Water Index (SWI) provided by the Global Land Service of Copernicus quantifies the soil moisture with a 
resolution of 0.1 degrees (about 11 km) based on the Advanced SCATterometer (ASCAT) sensor aboard the 
EUMETSAT MetOp satellite. A slightly higher resolution (9 km) has been achieved thanks to the Soil Moisture Active 
Passive mission (SMAP) started in 2015 [142]. A complete review on the techniques used to derive soil moisture 
from RS measurements have been presented by Wang et al. [88].  Al-Yaari et al. [143] compared the global soil 
moisture products from SMOS and ASCAT in the years 2010-2012 against the results of a land surface model 
(MERRA-Land), highlighting that the vegetation density plays a key factor in the accuracy of RS soil moisture. 

2.3.2 Broadband abiotic soil indices 

During the past few decades, it has been shown that soil spectra across the visible (VIS), near infrared (NIR), and 
short wavelength infrared (SWIR) regions are characterized by significant chromophores (e.g., OH, Fe3+, CO3, and 
COOH) enabling the quantitative analysis of soil properties [144]–[146].  Consequently, broadband spectral indices 
have been used to characterize soil minerals and properties.  The following are several examples of soil indices.   

Several water indices that rely on the sensitivity of the SWIR bands (either 1.2 or 1.6 or 2.1 µm, denoted as SWIR1, 
SWIR2, and SWIR3, respectively) to water content while assuming the relative stability of the NIR region to this 
variable help the estimation of water content. The Coloration Index (ColI) is sensitive to ferric oxides [144] is a 
normalized index of the green and the red bands. The Redness Index (RI) indicates hematite minerals [144] and it 
is another mathematical manipulation of the same bands. The Clay Minerals Ratio (CMR) highlights hydrothermally 
altered rocks containing clay and alunite [147] is based on the ration between the SWIR2 and SWIR3 bands.  The 
Ferrous Minerals Ratio (FMR) [147] is based on the ration between the SWIR2 and NIR bands.  The Iron Oxide Ratio 
(IOR) indicates hydrothermally altered rocks that were oxidized due to iron-bearing sulphides [147] and based on 
the ration between the red and the blue bands. 

The Crust Index (CI) aims at distinguishing between cyanobacteria-based crusty surfaces and the exposed substrate 
(e.g., bare sands) [148].  The CI takes advantage of a unique spectral feature of soil biogenic crust containing 
cyanobacteria.  The special phycobilin pigment in cyanobacteria contributes to producing a relatively higher 
reflectance in the blue region than does the same type of substrate without biocrusts.  Consequently, CI is a 
normalized index of the blue and the red bands. 

2.3.3 Albedo  

Broadband albedo is the ratio of the amount of electromagnetic radiation reflected by a surface to the amount of 
energy incident upon it.  This is a unitless variable that is expressed as a fraction or percentage.  Albedo may refer 
to the entire solar spectrum (0.3–4.5 µm) or merely to the visible portion (0.4–0.7 µm).  Albedo is an important 
Earth surface variable for understanding the transfer of energy and mass from the terrestrial ecosystems to the 
atmosphere [149]. The Brightness Index (BI) quantifies the albedo over the VIS region using the three visible bands 
(i.e., blue, green, and red).   Liang [150] presents regression analysis products for calculating albedo for the different 
sensors.  

2.3.4 Soil organic matter (lignin, cellulose, and protein) 

Soil organic matter (SOM) refers to the organic constituents in the soil.  It includes undecayed plant and animal 
residues at various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by soil 
organisms.  It affects the soil quality through both its chemical and physical properties.  In contrast to the chemical 
properties, and thus the spectra, of soils, rocks, and minerals that remain stable over the years, organic matter in 
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soils varies over time [151].  Therefore, the SOM spectrum should be related to the soil stage, including fresh, dry, 
or decomposed litter, with respect to the temporal domain [152].  Several studies have suggested diagnostic 
absorption features for various SOM components, all within the SWIR region [151], [153], [154].  Based on narrow 
spectral bands, the Cellulose Absorption Index (CAI) was introduced by Daughtry [155] and the Normalized 
Difference Lignin Index (NDLI) by Serrano et al. [156].   

2.4 Remote sensing products for marine applications 

Space- and air-borne RS products have been increasingly used for the estimation of marine environment features 
as time-, labor- and cost-effective alternatives to in situ measurements. There are several available datasets 
comprising of physical (temperature, salinity, currents, ice, winds, diffuse attenuation, etc.), biochemical 
(chlorophyll-a, primary productivity, pH, photosynthetically active radiation, etc.), and nutrient (calcite, silicate, 
nitrate, phosphate, oxygen, etc.) marine products, whose generation requires the exploitation of both RS 
observations and in situ measurements (Table 3). 

2.4.1 International sources  

Marine physical products elaborated in the Copernicus project are provided by the GLOBAL Ocean Sea Physical 
Analysis and Forecasting Product, which contains 3D potential temperature, salinity and currents information from 
top to bottom global ocean and 2D sea surface level, sea ice thickness, sea ice fraction and sea ice velocities 
information [157]. These products are available on-line and disseminated through the Copernicus Marine 
Environment Monitoring Service (CMEMS). Biochemical and nutrient Copernicus products are provided by the 
Global Ocean Biogeochemistry Analysis as a weekly forecast product, which includes weekly mean files for dissolved 
iron, nitrate, phosphate, silicate, dissolved oxygen, chlorophyll concentration, phytoplankton concentration and 
primary production parameters [158]. An additional available dataset, the Bio-ORACLE dataset, which was 
developed to be a ready-to-use global environmental dataset for modelling the distribution of shallow water marine 
species [159], contains various global rasters of marine environmental predictors (such as temperature, salinity, 
photosynthetically available radiation, diffuse attenuation, nutrients, dissolved oxygen), generated either from 
remotely sensed or in situ measured oceanographic data. Furthermore, the Global Marine Environment Dataset 
(GMED) combines publicly available climatic, biological and geophysical environmental layers of present (many 
annual climatologies are available since 1874 to 2000), past (Last Glacial Maximum period) and future (up to 2087) 
environmental conditions into a uniform dataset having similar extent and spatial resolution [160]. The GMED 
dataset is ready to be used by species distribution modelling approaches. Although ready-to-use in ecological 
models, the Bio-ORACLE and GMED datasets are coarse in their spatial resolution (approximately 9 km), and are 
thus not suitable for studies in the coastal areas. In addition, these datasets do not include data that refer to the 
past marine climate conditions (Last Glacial Maximum, Mid-Holocene) in the higher spatial resolution versions. The 
Ocean Climate Layers for Marine Spatial Ecology (MARSPEC) project provides the only available ready-to-use 
dataset at a spatial resolution of 1 km for the current data and 5 km for the paleoclimate data. Among the 
mentioned datasets only the CMEMS is currently updated, thus being particularly suitable for real-time 
applications. 

Finally, SAR data are useful for deriving significant wave height (SWH); in particular the SAR wave mode, which is 
derived by ERS SAR (Hasselmann et al. 2013), Envisat ASAR (Li et al. 2014), and by the recently launched Sentinel-1 
(Malenovsky et al. 2012) at a better resolution than ERS and Envisat. 

2.4.2 National repositories 

The Distributed Active Archive Centre (DAAC) for all Ocean Biology (OB) data, produced or collected under NASA's 
Earth Observing System Data and Information System, provides data access to sea surface temperature (SST), sea 
surface salinity (SSS) data marine products generated from MODIS, SeaWiFS, Aquarius and other sensors.  

MODIS radiometer instrument, with infrared bands designed to measure SST, has been providing accurate global 
measurements of SST at 1 km resolution for more than a decade [161]. Furthermore, the infrared channels of 
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AVHRR instruments, which are carried by the NOAA Polar Operational Environmental Satellites (POES) and the 
European MetOp Satellites, are also used to measure SST at 1 km resolution [162]. Aquarius [163] and the European 
SMOS [164] microwave radiometers have been used to estimate SSS with a spatial resolution of  about 100-150 km 
and 30-50 km, respectively (see https://oceandata.sci.gsfc.nasa.gov/ and https://smos-ds-
02.eo.esa.int/oads/access/). In future years, two of the main goals set by NASA are to: 

1. fine-tune the readings and retrieve data closer to the coasts and the poles 

2. combine the Aquarius measurements to those of SMOS to produce more accurate and finer maps of ocean 
salinity (https://science.nasa.gov/earth-science/oceanography/physical-ocean/salinity).  

Phytoplankton distribution in the sea is characterized by measurements of chlorophyll-a concentration, which can 
be retrieved based on data from satellite ocean colour sensors [165]. MODIS Chlorophyll-a Pigment Concentration 
product provides two estimates of the concentration of chlorophyll-a at 1km resolution, which are daily uploaded 
since 2000 for Terra platform [166] and 2002 for Aqua platform [167]. Another sensor that has been used since 
2011 to provide chlorophyll-a estimates is the Visible and Infrared Imager/Radiometer Suite (VIIRS), a multi-
disciplinary instrument of the Suomi National Polar-orbiting Partnership [168]. Older global chlorophyll-a estimates 
were measured by SeaWIFS, a satellite-borne sensor with a 1 km resolution and active from 1997 to 2010 [169].  

The red or NIR bands of MODIS Aqua satellite have been used to estimate suspended sediment concentration (SSC), 
which can be detected since the scattering by water molecules becomes insignificant in the red and NIR [170]. 
Particulate organic and inorganic carbon concentration products are by MODIS.  

Finally, Sentinel-3 topography mission, relying on the physical characteristics of the altimeter waveforms received 
by the SRAL instrument, measures geophysical parameters as sea surface height, significant wave height and wind 
speed over ocean surface, eddies and tides [171] at a resolution of about 300 m, much higher than the resolution 
of MODIS and MERIS products  (+1 km [172]).  

As a recent example of ecological application of climatic RS ocean products, the comparison of near-real-time SST 
values with a long-term baseline SST at reef location has allowed the estimation of the thermal stress that can lead 
to coral bleaching and the determination of coral bleaching hotspots [173]. The anomalously warm ocean 
temperatures have caused an increase in the severity and frequency of mass coral bleaching and mortality events 
contributing to the deterioration of reef ecosystems [174]. The resulting 5-km Coral Bleaching HotSpots product 
provides a measure of daily thermal stress.  

RS marine features have been assimilated in methods described in [175], [176] to predict potential fishing zones 
(PFZs). They rely on the synergetic use of SST and chlorophyll-a information. Increased specialization is exhibited 
by the Indian National Centre for Ocean Information Services to identify PFZs along the Indian coastline. 

2.5 Use of remote sensing data in Species Distribution Models (SDMs)  

2.5.1 Terrestrial  applications 

RS data are frequently used to feed SDMs. SDMs are empirical models that try to predict the spatial distribution of 
a species, a group of species or a community at a global, regional or local scale using spatially explicit predictors. 
Different environmental variables can be used as predictors in SDMs, but it is clear that RS variables have the 
advantage of being frequently updated and have proved to have high predictive power. Some of the most common 
RS-based predictive variables used in models are vegetation indices, in particular NDVI, that are indicators of 
vegetation cover, photosynthetic activity phenology, and canopy structure and as such can reflect the habitat 
available for species. It is also possible to use as predictors vegetation maps, that are themselves frequently based 
on RS data. Since the launch of the Landsat-1 satellite in 1972 it has been possible to use high resolution RS products 
to produce vegetation maps or to derive vegetation indexes. Although RS data are more and more frequently 
employed in vegetation mapping they are still only marginally employed in SDMs. This agrees with the claim by 
Rodríguez et al. [177] that, although there are numerous RS products that are useful for SDMs, there is a great 
potential that had been underexploited ten years ago, and continues today [178]. 

https://smos-ds-02.eo.esa.int/oads/access/
https://smos-ds-02.eo.esa.int/oads/access/
https://science.nasa.gov/earth-science/oceanography/physical-ocean/salinity
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Here, we have reviewed a hundred scientific papers that included "Species distribution models" and remote sensing 
terms to evaluate how RS-based data are used in SDMs and to what extent the spatial resolution of RS products 
conditions the success of these models. The first thing that should be noticed is that up to three different spatial 
resolutions may be used in SDMs. These are:  

1. resolution of the "model output"; 

2. resolution of the "response variable" (that is the resolution of species presence or abundance data that are 
used to feed or validate the model) ; 

3. resolution of the "predictor variables" (RS products or other predictors).  

We have considered model "resolution output" to classify papers as high resolution (< 30 m), medium resolution 
(30-250 m) or coarse resolution (> 250 m), references with details on the considered application, sensors used and 
model resolution are collected in Annex 1. Approximately half of the papers produced high to medium resolution 
outputs from 2 m [179], [180] to 250 m [181]. Among the remaining papers, a common spatial resolution was 1000 
m [22], [73], [182]–[188], probably mainly determined for the great availability of global RS products at that 
resolution [177] and even coarser resolutions [189], [190].  It is not uncommon that RS products with different 
resolutions are used and interpolated, fused, or aggregated to make predictions at the resolution defined in the 
model output. For example, the altitude data, provided for most of the globe by the Shuttle Radar Topography 
Mission (SRTM) at 30 m or 90 m, is commonly used as a predictor in combination with MODIS EVI or NDVI (250 m), 
MERIS NDVI (300 m), Spot-Vegetation NDVI (1 km), LST or SST from MODIS (2000-5000 m) [183]–[185], [190]–[193]. 

Not so common, but also possible, is that Very High Resolution (VHR) RS data are used as predictors in models with 
a relatively low spatial resolution output. For example, Yabuhara et al. [188] used high resolution ALOS-PRISM (2.5 
m) and orthophotos (1 m) combined with 300 m bird census transects to make predictions of changes in distribution 
of riparian birds along 1 km river segments in Japan. Also Zellweger et al. [23] used LiDAR (1.4 m) and SPOT-5 (10 
m) to predict forest bird distribution in 1 km grid cells. LiDAR stands out as a recent source of VHR RS data to build 
high-resolution terrestrial DEMs [180], coastal bathymetry [194], [195], or provide information on forest structure 
[23], [196], [197], and has been the object of a recent review considering its use for habitat suitability modelling 
[198]. Availability of VHR RS products is not the only reason for its relatively low use in species distribution models. 
In many instances RS data may be available (i.e., Landsat data since the 1970's) but they are computationally costly 
to be used for regional, continental or global studies, and lower resolution RS products are preferred. This explains 
that a recent study evaluating high resolution global forest change in the 21st century was considered interesting 
to be published in Science in 2013 [199] although these RS data have been available for 40 years. In the case of 
mobile species like birds, coarse resolution products may work better for most species, just because the species 
depends on resources at a larger scale. Seoane et al. [200] show that coarse vegetation maps like CORINE (250 m) 
are adequate for species distribution models for many species of birds and that there is little to gain incorporating 
higher resolution RS maps derived from Landsat (30 m). A similar result was obtained by Rickbeil et al. [201] who 
showed that incorporating detailed RS data from Landsat to describe the shore areas provides little improvement 
to coastal bird SDMs using coarser RS products. A common claim is that it is necessary to have species predictions 
at the scale of local management actions 10-100 m [180], [202], [203]. However, this approach presents a certain 
limit: when predictors with different spatial resolutions are tested, landscape patterns tend to override local effects 
and there is little to gain increasing the resolution even for modeling the distribution of plants [180]. 

2.5.2 Marine applications 

Marine RS products are widely used in statistical modelling in order to examine benthos distribution [204]–[206], 
marine mammals [207]–[210], sharks  [211], invertebrates [212], essential fish habitats [213], phytoplankton 
distribution and blooms [165] as well as invasive species [214]–[217].  

The environmental predictors are usually data like SST and its first order products (mean monthly, annually mean, 
anomalies, etc.), SSS (mean monthly, annually mean, anomalies, etc.) and bathymetry (slope, aspect, curvature, 
profile, etc.) along with nutrients, sea surface currents and anomalies. Algorithms like GLM, GAM, Random Forest 
and MaxEnt are among the most commonly used (see [218], [219]). Bio-Oracle and MARSPEC 6 [159], [220] provide 
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ready-to-use layers for marine SDMs, allowing also non-experts in marine remote sensing to exploit and use the 
data in SDMs, with several case studies that exploit the distribution of marine algae, fish, invertebrates and invasive 
species.  

2.6 Multi-sensor/multi-platform approaches 

The use of multi-sensor approaches is a way to overcome the fixed temporal and spatial resolutions of single data 
sources and offers advantages for mapping and modelling vegetation parameters (see comparative analyses by Gao 
et al. [221], Dusseux et al. [222]). By combining radar and optical data, also limitations of vegetation index data 
derived from optical RS such as saturation effects (e.g., [223]) and dependence of weather conditions can be solved. 
Data integration is mostly done i) before classification or modelling (“fusion of input data”) or ii) after classification 
or modelling (“fusion of derived information” [224]). More detailed information regarding fusion techniques can 
be found in [225] and [226].  

In the field of land use mapping and monitoring, a wide range of studies, partly based on vegetation indices to 
estimate (changes) in biomass, employ multi-sensor RS data (reviewed in [224]). The examples reported in this 
section are collected in Annex 2, describing the application considered in the different references, the satellite 
sensors used and their resolutions. Most often, Landsat data are combined with ALOS/PALSAR, Radarsat or ERS 
datasets. However, huge differences exist regarding location of study area, scale and temporal resolution among 
the studies conducted [224]. For example, Revill et al. [227] evaluated the suitability of optical and radar RS data as 
input source for a process-based model analysing cropland C dynamics, more precisely for assimilating temporal 
LAI data in six European agricultural field sites. While RS data substantially improved the model output, the use of 
radar data alone, being unaffected by cloud cover, was more favourable compared to the combined use. 

Mountain and (semi-)arid areas pose some particular challenges for RS applications. Topographically and 
homogeneously atmospherically corrected data are indispensable in mountain ecosystems, in particular when using 
multi-sensor approaches. By combining corrected and co-registered Landsat ETM+ and ALOS/PALSAR data, Attarchi 
and Gloaguen [228] were able to develop a significantly improved statistical model for above ground biomass in a 
mountain forest site in Iran. In (semi-)arid regions, bright soils and dead vegetation hamper the analysis of optical 
data, whereas the use of radar data is restricted by e.g. the patchy vegetation structure, different scattering 
characteristics of various vegetation components and the dominant influence of ground surface [229], [230]. Only 
a limited number of multi-sensor studies have therefore been conducted in these ecosystems (reviewed in [231]). 
Synergistic effects of optical and radar data have been used in (semi-)arid regions to model daily evapotranspiration 
(derivation of biophysical input data for a process-based model [232]), to predict vegetation cover [229] and to 
estimate aboveground biomass [230], [233] 

In estuarine/marine environments, NDVI derived from optical data provides useful information for a variety of 
ecological applications, e.g. regarding coastal wetland extension [234] or eutrophication [10]. One example of a 
multi-sensor approach is the study by Chakraborty et al. [235] who analysed MODIS Enhanced Vegetation Index 
(EVI) and AMSR-E radar signatures to estimate the amount of vegetation biomass that is submerged during 
monsoon flooding  with the aid of a radiative transfer model. Furthermore, Rangoonwala et al. [236] related 
persistence of marshland flooding (radar data) caused by Hurricane Sandy to changes in vegetation (optical data).  

While the use of multi-sensor approaches offers new opportunities with respect to time-series analysis, cross-
sensor calibration to make for example NDVI values comparable is a challenging task [237]. The long-term 
availability of data from the Landsat mission makes this sensor still the most suitable for multi-temporal analysis 
(e.g., [74]). As Sentinel-2, with the first platform launched in 2015, has a similar spectral coverage but better spatial 
and temporal resolution, current efforts focus on combining both data sets to provide a near daily global coverage 
with 30 m resolution (NASA Harmonized Landsat-Sentinel-2 (HLS) project [238]). Although some research have been 
carried out to develop radiometric correction methodologies that maintain the radiometric homogenization 
between different sensor time series [239] allowing a direct comparison, there is still a new era to meet for the use 
of multi-temporal, multi-source RS data in ecology. 
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2.7 Conclusions and future perspectives 

The research directions indicated by Plummer in 2000 with the objective of promoting the use of RS products as 
drivers of ecosystem models were mainly concerned about the reliability and repeatability of the RS estimates of 
surface ecological variables. The present review work highlighted that in the past 17 years the diffidence and 
caution of the ecologist community against RS data have been reduced mainly thanks to the increased availability 
of global RS products subject to rigorous quality assurance tests. In fact, well-known and tested global datasets are 
mainly used by ecologists and conservation managers that usually do not have skills and knowledge on the analysis 
and production of the required RS estimates. A possible drawback of the readily available datasets is that not all 
the variables are updated in a frequent manner and there is not an available automated process that can provide 
updated dataset for use in ecological modelling. Moreover, the resolution of the global RS products may not be 
sufficient for applications at local scales (e.g., [240]). Several examples in literature demonstrated that these 
limitations have been surpassed thanks to the continuous improvements in empirical and physically based methods 
to link vegetation properties to RS reflectance signal, by using suitable statistical downscaling techniques for climate 
products, and by considering different RS signals into multisensor approaches. These possible approaches have not 
become yet common practices for most of the ecological modellers. Projects such as ECOPOTENTIAL promoting the 
collaboration between the remote sensing and the ecosystem modeller communities are essential to develop 
standardize techniques exploiting  the full potentiality of RS data for local applications. 
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Table 2 Overview of recent remote sensing methods for the extraction of leaf and canopy properties. This table gives per 
method: (a) the abbreviation(s) of remote sensing source(s) of the input data (denoted with red), (b) (when available) the 
performance divided into quartiles (denoted with green). A symbol  is added next to a method, when auxiliary data other 
than remote sensing data is used as input (i.e. field campaign data, DEMs). The remote sensing characteristics for a specific 
source are provided within parentheses next to the complete name of source. All abbreviations are explained in the table 
under the figure. 

 

 
 

Empirical models Semi-empirical models Physically-based models 

Leaf/Canopy Water [85] LA AS AW P4  
[86] LA P3 
[87] MO P4 

 [109] MO P4  
[110] MI P3  
[111] HY          
[130] CH P4 

Leaf/Canopy Chlorophyll [93] AI  
[96] SE P4  

 [112] RA P4    
[113] LA P4  
[120] SP P4  
[14] LA P4  
[123] SP P4          
[125] CH P4  
[131] ME P3 

 
Leaf Area Index 

[94] RA P4 
[95] MO LA ME P4 

[135] DE P3-P4  
[137] RA P3-P4 

[112] RA P4  
[131] ME P3  
[114] MO AS P4  
[115] SE P4  
[116] LI P4    
[120] SP P4  
[14] LA P4  
[123] SP P3  
[126] LA  

Canopy Structure (e.g. 
leaf angle distribution) 
/Height 

 [133] MR P2-P4  
[134] MR P2-P3  

 

Leaf/Canopy Nitrogen [97] RA 
[99] SE P3  
[100] AV P4  

  

Solar Chlorophyll 
Fluorescence 

[104] GO 
[127] GO 

  

Understory NDVI  [138] MΟ  

 
Remote sensing data sources (satellite/airborne imagery) and their characteristics: 
AI: AISA (HS, VHR) AS: ASTER (MS, MR) AV: AVIRIS (HS, MR) AW: AWiFs (MS, CR)  
CH: CHRIS/PROBA (HS, MR) DE: DEIMOS-1 (MS, MR) GO: GOSAT (MS, CR)  HY: HyMap (HS, HR)  
LA: LANDSAT (MS, MR) LI: LISS-3 (MS, MR) ME: MERIS (HS, CR) MI: MIVIS (HS, HR) 
MO: MODIS (HS, CR) MR: MISR (MS, CR) RA: RapidEye (MS, HR) SE: Sentinel-2 (MS, HR) 
SP: SPOT (MS, HR) 

 
   

Characteristics of remote sensing data: 
MS: Multispectral HS: Hyperspectral VHR: Very High resolution (≤4m) 
HR: High resolution (≤10m) MR: Medium resolution (≤30m) CR: Coarse resolution (>30m) 

   
Performance subdivisions: 
P1 / P2 / P3 / P4: 0-25% / 25-50% / 50-75% / 75-100% quartiles of performance 
 : Input to the models includes auxiliary data different than remote sensing data  
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Table 3. Available datasets of marine products. 

Dataset Description Available products Website  

Bio-
ORACLE 

Global environmental dataset 
for marine species    
distribution modelling 

- SST 
- Ocean salinity   
- Photosynthetically available 

radiation 
- Diffuse attenuation 
- Nutrients 
- Dissolved oxygen 
- pH 

http://www.oracle.ugent.be/ 

 

CMEMS Copernicus Marine 
environment monitoring 
service products 

 

- SST 
- ocean salinity 
- ocean currents 
- sea ice 
- sea level 
- winds 
- ocean optics 
- ocean chemistry 
- ocean biology 
- ocean chlorophyll 

http://marine.copernicus.eu/s
ervices-portfolio/access-to-
products/ 

 

EMIS Environmental Marine 
Information System – 
European Commision 

- Biophysical parameters 
provided by: MODIS-Aqua, 
SEAWiFS, MERIS, MODIS-
Terra, Pathfinder  

http://emis.jrc.ec.europa.eu/e
mis_6_0.php  

GMED Global Marine Datasets for 
species distribution modelling 
and environment visualisation  

- water depth 
- ice concentration 
- salinity 
- temperature 
- surface current 
-  chlorophyll-a concentration 
- wave height 
- pH 
- nutrients  

http://gmed.auckland.ac.nz/do
wnload.html 

INCOIS Indian National Centre for 
Ocean Information Services – 
Potential Fishing Zone 

- potential fishing zones http://www.incois.gov.in/Mari
neFisheries/PfzAdvisory 

OB.DAAC Distributed Active Archive 
Center  for Ocean Biology, 
NASA's Earth Observing 
System Data and Information 
System 

- SST  
- SSS 
- chlorophyll and calcite 

concentration 
- particulate organic and 

inorganic carbon 

https://oceandata.sci.gsfc.nasa
.gov 

MARSPEC Ocean Climate layers for 
Marine Spatial Ecology 

- Topography variables  
- SST parameters 
- SSS parameters  
- Paleoclimatic data 
 

http://www.marspec.org/  

http://www.oracle.ugent.be/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://emis.jrc.ec.europa.eu/emis_6_0.php
http://emis.jrc.ec.europa.eu/emis_6_0.php
http://gmed.auckland.ac.nz/download.html
http://gmed.auckland.ac.nz/download.html
http://www.incois.gov.in/MarineFisheries/PfzAdvisory
http://www.incois.gov.in/MarineFisheries/PfzAdvisory
https://oceandata.sci.gsfc.nasa.gov/
https://oceandata.sci.gsfc.nasa.gov/
http://www.marspec.org/
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NOAA Coral Reef Watch program's 
satellite data 

- bleaching alert area 
- coral bleaching hotspot 
- current thermal stress 
- degree heating week 
- accumulated thermal stress 
- sea surface temperature 
- sea surface temperature 

anomaly  

https://coralreefwatch.noaa.g
ov/satellite/ 

Sentinel 3 topography mission products - SST 
- sea surface height 
- significant wave height 
- wind speed over ocean 

surface 

https://sentinels.copernicus.eu
/web/sentinel 

SMOS ESA's Soil Moisture Ocean 
Salinity Earth Explorer mission 
providing Near Real Time data 

 

- SSS https://smos-ds-02.eo.esa.int 

 

https://coralreefwatch.noaa.gov/satellite/
https://coralreefwatch.noaa.gov/satellite/
https://smos-ds-02.eo.esa.int/
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3. Validation of ecological models through Earth observations 

D. Pasetto1, R. Casagrandi2, G. El Serafy3, L. Mari2, A. Monteiro4, A. Ziemba3 

1Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Switzerland 
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy 
3Deltares, Delft, The Netherlands 
4Cibio/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Portugal 
 

The link between ecological models and EOs can help us better understand mechanisms governing our planet in a 
context of global change. Ecological models as simplified representations of the Earth's living systems can benefit 
in multiple directions from EO. RS data and products constitute a valuable and increasingly available source of 
distributed information. RS datasets are currently used not only to feed the inputs of terrestrial and marine 
ecological models, but also to assess the reliability of model predictions.  

Mathematical modelling is a multi-step process. Process-based models are often developed for region-specific 
applications, with final outputs sometimes resulting from multiple models feeding into one another; the generality 
of the underlying ecological principles makes them applicable to a wide range of systems, varying in both domain 
and scale [1]. Ecological processes are often quantified through variables and numerical coefficients (parameters) 
endowed with acceptable ranges defined through scientific research and documented in the literature [2]. A single 
model can describe several of such processes; therefore, it is no surprise that the number of active processes can 
quickly grow to an ungainly number when multiple models are coupled with each others. The exact value to be 
ascribed to the parameters of ecological models is usually to be determined through proper calibration against 
direct measurements or RS products. Following the model calibration phase, the validation step consists in the 
verification of the accuracy and precision of the model results for its intended use [241], which represents a crucial 
step in the development of ecological models.  

Both calibration and validation are based on the computation of error metrics between the model results and the 
associated ecosystem measurements. Due to the spatially discrete nature of many process-based models, the 
comparison between ecological model outputs and in-situ data might be inappropriate because of local 
heterogeneities or unfeasible because of model resolution. RS products provide an economically viable and 
information-rich datasets, which can be used in efforts to calibrate and validate models, especially when compared 
to the high cost and low spatial and temporal resolution of operating in-situ monitoring stations. Of course, when 
ground truthing is problematic, the issue of implementing non-validated RS products would result in the increment 
of the level of uncertainty on the reference data. Despite these shortcomings, there are several examples of RS 
data being applied to both automated and manual model calibrations. Kamel et. al. [242] used turbidity images to 
calibrate model parameters identified through a sensitivity analysis with the objective of reconstructing 
sedimentation flumes resulting from riverine discharges into the North Sea. In this case, the calibration was 
performed through comparison between model results and the RS images of suspended sediments, computing the 
residuals between concentrations, identifying zones of similarities and the error bias. In this same study, a further 
analysis was executed in regard to in-situ measurements, and the differences in the measurements between 
monitoring stations and remote sensing came to the realization that the RS products on the whole produced an 
under-estimation in the water turbidity resulting in a model calibration, which produced improved results when 
compared with satellite information, but a higher error in respect to monitoring station which are given a higher 
credibility interval. A similar approach was followed by Chen et al. [243] utilizing the ECOMSED model for a case 
study off the coast of China, also accounting for the differences between in-situ and RS applications and yielding 
results consistent with those of Kamel et al.  

In this regard, at an early stage, Plummer [6] identified three possible strategies to compare the modelled outputs 
with RS data: 

 Indirect comparison, which looks at spatiotemporal correlations between the output of the ecological 
model, such as LAI, and the associated variables estimated via RS data, for example estimations of LAI using 
NDVI. 
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 Reflectance as an ecological model output, where modelled outputs are processed to obtain surrogates 
(e.g. Hybrid Difference Vegetation Index, HDVI) of the RS observation (e.g. NDVI). 

 Coupling ecological and reflectance models, consisting in feeding a radiative reflectance model (e.g. SAIL) 
with the outputs of the ecological model (e.g. LAI estimated with a grassland ecological model [244]), and 
directly compare the measured and modelled radiances.  

The last strategy is particularly appealing since it avoids possible discrepancies between the RS products and the 
model outputs, and the inversion of the radiative transfer model. However, the outputs of the ecological model 
must be adapted to serve as input of the radiative model, which, on the other side, requires a proper calibration. 
The coupling between ecological and reflectance models is frequently adopted in hydrological applications. For 
example, De Lannoy and Reichle [245] estimate surface soil moisture with a land surface model, and use it as input 
of a radiative transfer model to directly compare the modelled temperature brightness with the observations from 
SMOS.  However, as several RS products are nowadays freely accessible in a number of data repositories (see Table 

3), Plummer’s indirect comparison is the most adopted strategy for validation, not requiring the coupling with 
reflectance models.  

3.1 Validation metrics 

The comparison between the model results and the measurement data passes through the computation of model 
skill functions and error metrics. This in turn translates into the efficiency of the model to recreate what has been 
seen to occur in the natural system as compared to the simulation [5]. These measurements are ideally on a similar 
spatial and temporal resolution as the model, or at least with sufficient resolution to allow for a qualitative 
comparison. Rykiel [241] lists twelve alternatives used in the literature to validate ecological models, to be selected 
depending on the available data and the type of model used. These techniques include statistical validation against 
data, historical and predictive validation, sensitivity analysis and the comparison with other models. The standard 
way to validate the modelled results is to compare the vector of modelled outputs (of dimension 𝑛), here indicated 
with 𝑦𝑚, with respect to the observed data at the same point in space and time, indicated with 𝑦𝑜. For hindcast, 
or "in-sample validation", the data used in the calibration and validation period coincide. This could generate an 
overestimation of the accuracy of the model. For this reason, if enough data are available, it is common practice to 
adopt "out-of-sample" validation, where different data are used in the calibration and validation periods. The 
recent review work of Bennett et al. [246] describes several techniques available to characterize the performance 
of an environmental model, considering numerical, graphical and qualitative methods. 

These techniques can be grouped as the following: 

 Direct value comparison, where the performance of the model is assessed on the ability of its outputs to 
reproduce some ecologically relevant statistics of the observations, such as the mean y̅ = ∑ 𝑦𝑖

𝑛
𝑖=1 𝑛⁄ , the 

variance, ∑ (𝑦𝑖 − �̅�𝑛
𝑖=1 )2 𝑛⁄ , or higher-order statistical moments. 

 Element by element comparison, where the whole dataset is considered under several possible approaches: 

o analysis of scatter plots and the associated linear regression analysis;  

o frequencies of concurrent or missed events, where the interest is to assess if the modelled and the 
observed data satisfy a property of interest (e.g., given a certain risk tolerance 𝜏, the property 𝑦𝑖 <
𝜏 is checked for each element 𝑖); in this case the results are typically represented with a  
contingency table, reporting the occurrences of the model hits, false negatives and positives; 

o residual methods, mainly based on the computation of the residuals, 𝑑𝑖 = 𝑦𝑖
𝑜 − 𝑦𝑖

𝑚, and related 

metrics like bias, ∑ 𝑑𝑖
𝑛
𝑖=1 𝑛⁄ , root mean squared error (RMSE), √∑ 𝑑𝑖

2𝑛
𝑖=1 𝑛⁄ , or relative errors. 

 Preservation of the data pattern, where local spatial or temporal cross-correlations are sought. To this goal, 
the main metrics of interest are the Pearson’s correlation coefficient (𝑟)  
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𝑟 =
∑ (𝑦𝑖

𝑜 −𝑛
𝑖=1 �̅�𝑜)(𝑦𝑖

𝑚 − �̅�𝑚)

√∑ (𝑦𝑖
𝑜 −𝑛

𝑖=1 �̅�𝑜)2 ∑ (𝑦𝑖
𝑚 −𝑛

𝑖=1 �̅�𝑚)2
 

and the Nash-Sutcliffe efficiency (NSE)   

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑖

𝑜 −𝑛
𝑖=1 �̅�𝑚)2

∑ (𝑦𝑖
𝑜 −𝑛

𝑖=1 �̅�𝑜)2
. 

Best performances are reached when 𝑟and NSE are close to 1 (𝑟 ranges between -1 and 1, while NSE is less 
than 1). 

 Indirect metrics, mainly based on the uncertainty associated with the identification of the model’s 
parameters. As an example, the high covariance in estimated parameters may suggest over-
parameterization or other problems in model identification. 

 Data transformation methods, where the performance of the model is analysed in the frequency domain 
of the data, for example by means of Fourier transformation, wavelets, or Empirical Orthogonal Functions 
(EOFs). 

 Qualitative model evaluation, mostly depending on the assessment of the model results based on the 
analysis of some of the previously listed metrics and the visual comparison between modelled outputs and 
data, which is highly relying on the subjective opinion of expert modellers. 

The validation strategy to be adopted depends on the particular features of the model, application site, and data 
availability. As highlighted in [247], [248] the combined use of different metrics is recommended to assess the 
performance of the model and the possible presence of bias in the outputs. The evaluation of validation metrics in 
both space and time is essential to establish the reliability of the model, not only in retrieving the global trends of 
the phenomena under study, but also in describing the local dynamics. To this end, the use of a Taylor diagram 
[249] can be useful to compare the performances of different models, since it summarizes in a single plot the RMSE, 
the correlation coefficient and the normalized model standard deviation.  

3.2 Validation based on Earth observations 

The identification of the best strategy to compare two raster maps is a common problem to several scientific fields, 
such as image analysis, oceanography, landscape ecology, and remote sensing [250]. For example, in marine 
ecosystem modelling, computed maps resulting from a biophysical model should reproduce the patterns in the 
data indicating patches of high phytoplankton concentrations or high nutrient gradients.  

When validating the maps produced by a spatially-explicit model against RS products, modellers may possibly face 
the difficulty of contrasting raster maps with different spatial resolutions and temporal discrepancies. A common 
strategy for the evaluation of quantitative metrics is to downscale the satellite products to the computational grid 
of the model, and perform a per-pixel comparison at the temporal resolution of available data. In most cases this 
procedure does not take into account the measurement errors and the inaccuracies introduced by inappropriate 
downscaling, factor that might contribute to worsening the model statistics. Smoothing model outputs and data by 
taking monthly or seasonal averages may help to remove local oscillations. In addition to these resolution issues, 
Bennett et al. [246] underline that it is somehow expected to have some discrepancies in cases where what is 
modelled (e.g. phytoplankton concentration) is not exactly what is measured (e.g. chlorophyll-a), thus a certain 
level of model inaccuracy is unavoidable and perfect fits might simply be unrealistic. 

Frequently, the model results qualitatively resemble the data map, but with the features of interest slightly shifted, 
rotated or dilated [250], especially of fields generated by chaotic dynamics and/or processes with a significant 
stochastic component. In such cases, the direct application of performance metrics based on per-pixel residuals, 
such the RSME, may not be the best approach, because even small perturbations between two raster maps might 
cause large error statistics, not reflecting apparent similarity between the maps; on the contrary, modelled results 
having small errors may catch the average value of the quantity of interest, without reproducing important spatial 
patterns present in the data (e.g., [251]). For example, in systems subject to turbulence, the chaotic nature of the 
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solutions and of the spatial-temporal fields forbids a direct comparison between models and experimental data. In 
such cases, one resorts to comparing low-order and higher-order statistical moments, spectra, correlations, and 
other measures of spatial structure. When comparing two maps, it is not straightforward to replace the human 
ability in recognizing similar spatial patterns through objective metrics, which is the main reason why there are still 
many examples of model outputs validated via qualitative comparison, as highlighted by the review works of 
Arhonditsis et al. [252] and Stow et al. [250]. There is however the need to adopt rigorous objective criteria in model 
validation. In a recent paper, Koch et al. [253] assessed the performances of different quantitative metrics in 
reproducing the qualitative, visual comparison between two maps as performed by humans. They used 12 different 
types of perturbations to modify the original map and compared the between-maps similarities as perceived by 
200 individuals (via a web survey), and as revealed by the most common metrics used in terms of map comparison, 
i.e.: EOF analysis, Kappa statistics, and Fuzzy theory. 

 EOF analysis, largely used in atmospheric sciences [254], is based on the decomposition of a spatiotemporal 
dataset into a small set of orthogonal spatial functions, similarly to principal component analysis, with the 
first EOF expressing the maximum variance of the dataset. Each map in the original dataset can be 
approximated by a linear combination of the spatial functions. The idea is to apply EOF transformation to 
the data and the model outputs, and then analyse the errors among the first basis functions. 

 The Kappa statistic, also called Cohen’s Kappa statistics, is based on a per-pixel comparison in which pixels 
are classified into K alternative categories (or properties of interest); the level of agreement between the 
model and the data is compared against random pixel categorization. In formulas, indicating with P(a) the 
percentage of pixels of the model having the same category of the associated pixels in the data, and P(e) 
the percentage of agreement in a random permutation of the pixels among the categories, the Kappa 
statistics is computed as (P(a) − P(e)) (1 − P(e)⁄ ). In case the model categories are equal to the data 
categories for each pixel, the Kappa statistic assumes its maximum value, 1. Otherwise, if the level of 
agreement is lower than a random agreement, the Kappa statistic is negative. 

 Fuzzy theory refers to those methods that perform a per-pixel comparison considering also the neighboring 
cells, thus removing the possible drawbacks caused by shifts between the reference map and the model 
results. In this category, the most common approaches are the Fuzzy Kappa statistics and moving window 
techniques. In particular, the former method extends the Kappa statistics by controlling the level of 
agreement of a pixel with respect to the surrounding pixels of the reference map, weighted by a distance-
decay function. 

Koch et al. [253] concluded that metrics based on Fuzzy theory have the higher agreement with the results obtained 
by visual comparison. 

Several studies in the literature are proposing new and more elaborated techniques to quantitatively and 
objectively assess maps similarities (see e.g., [255]). Ecologists willing to compare their results to RS maps should 
be aware that the proper use of these metrics might help the objective quantification of the model performances. 

In the following, we present a non-exhaustive overview of some interesting ecological models (listed in Table 6) 
whose results have been validated against RS data after the publication of Plummer’s paper, with applications 
focusing on either terrestrial or marine ecosystems. Table 4 summarizes the examples discussed below, 
subdividing them with respect to the model output and the technique used for validation. For each reference, the 
satellite sensor generating the products and metrics used in the quantitative validation are specified.  

3.3 EO-based validation of terrestrial ecosystem models 

Most terrestrial ecological models aim to reproduce the ecosystem dynamics and vegetation patterns through the 
estimation of processes governing the water, energy and carbon cycles. The main outputs of these models allow 
ecologists to estimate the dynamics of several variables of interest, such as gross and net primary productivity 
(GPP/NPP), canopy properties (e.g., LAI), ET, land cover, plant communities and forest succession. The increasing 
use of RS data to estimate these variables and processes with high accuracy and resolution enhanced considerably 
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the usage of RS data as an alternative to in-situ data for the model validation. A clear example of the utility of RS 
data in the assessment of ecological models in locations were in-situ measurements are impractical is presented by 
Murray-Tortarolo et al. [83]: they compared the ability of eight land surface models in reproducing the LAI derived 
by MODIS at high latitudes for the period 1986-2005. In this case, several model limitations are highlighted, in 
particular a general overestimation of the mean LAI computed by the models. Thus, the authors suggested 
improving the characterization of the phenology by using more accurate plant functional types in all models. 
However, this study bases the map comparison only on the evaluation of the RMSE, without considering other 
metrics for the recognition of common correlation and pattern, which would have further improved the model 
analysis. 

In terrestrial system, model validation with RS data occurred from local to global scale studies. Dynamic vegetation 
and biogeochemical models were the model families most considered, and primary production (GPP/NPP) the 
product most often validated with RS data. The set of models used included: AquaCrop, CLM, CCSM, ED2, Forest-
BGC, LPJ, LPJ-GUESS, LSM, ORCHIDEE, SEBS, SDGVM, TRIFFID, ZELIG. The RS products that have been used for the 
different model comparison have been listed in Table 4. 

AquaCrop. This is a crop water productivity model developed to analyse food security and to assess responses of 
crop production to environment and management. Urban et al. [256]  proposed an efficient-low-cost approach to 
validate FAO's AquaCrop model using RS estimates instead of crop ground measurements.  Crop response to water 
is an important component of decision-making for agricultural water management. The comparison between the 
AquaCrop simulations and the RS estimates to different crops using NSE coefficient showed a good agreement of 
above-ground biomass and canopy cover estimations, mainly in non-stressed farm conditions (all NSE>0.80). 

CCSM. The Community Climate System Model (CCSM) is a coupled climate model for simulating the Earth's climate 
system. Randerson et al. [257] analyzed the performance of biogeochemistry models that are integrated within the 
Community Climate System Model (CCSM), i.e. the Carnegie-Ames-Stanford Approach′ (CASA′) and the carbon–
nitrogen (CN) model, using a systematic framework. LAI observations from MODIS (MOD15A2 collection 4) were 
considered between 2000 and 2004 and monthly mean MODIS values compared against model estimates. The 
comparison with MODIS LAI based on scores showed that for both models, the timing of maximum leaf area lagged 
behind the observations by 1–2 months. The spatial patterns of MODIS NPP [258] were also compared to models 
estimations. Results evidenced high uncertainty in the comparison. The summary of model evaluation datasets and 
analysis scored as low to medium the convergence between models and remote sensing estimations for LAI and 
NPP. 

ED2. The Ecosystem Demography Biosphere model version 2 (ED2) [259] couples several processes such as leaf-
level physiology, plant allocation, allometry, phenology, dispersal, the effects of fire disturbances, and below-
ground soil carbon dynamics and hydrology. Levine et al. [260] tested the effect of ecosystem heterogeneity in the 
resilience of the Amazon to climate change using ED2 and found a good overall agreement between the seasonal 
pattern of aboveground biomass (Kg cm-2) and biomass variability (coefficient of variation) estimated by MODIS-
GLASLidar and ED2. However, MODIS-GLASLidar net values were always higher than modelled, especially in the end 
of dry season. 

FOREST-BGC is a model of forest ecosystem processes for regional applications. Lopes et al. [261] compared 
quantitative estimations for NPP in man-made Eucalyptus and Pine forest stands based on FOREST-BGC, MODIS 
NPP and field measurements estimations.  ANOVA and Duncan New Multiple Range tests were performed to 
identify if average NPP figures were statistically different between all tested methodologies. NPP images were 
compared using the Kappa test statistic and the proportion of agreement. The overall rate of agreement between 
FOREST-BGC and field estimations (82.6%) indicated that the model was able to simulate the production of stands 
with a high degree of accuracy. A strong correlation between the FOREST-BGC NPP and field NPP was found (0.88). 
The comparison of field NPP with MODIS NPP resulted in a rate of agreement of 54%. Authors conclude that MODIS 
NPP tended to simplify reality and homogenize the productive potential of the stands and are inefficient for 
identifying extreme NPP values. FOREST-BGC combined with LAI from remote sensing may provide a suitable tool 
at a regional and global scale. 
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LPJ. The Lund-Potsdam-Jena (LPJ) model [262] is a Dynamic Global Vegetation Model (DGVM) developed to study 
biochemical and biophysical interactions between the atmosphere and terrestrial ecosystem dynamics. This is 
achieved by modelling the vegetation component through ten functional types regulating processes such as 
photosynthesis, and plant growth. Coupling the water and carbon cycles, LPJ computes ET, runoff and soil moisture 
together with vegetation structure. The modelled vegetation structure, GPP and LAI have been compared to RS 
datasets in many applications, but mostly limiting the comparison to the qualitative identification of common 
patterns. At global scale, Sitch et al. [262] concluded that LPJ estimations of vegetation structure are in good  
agreement with land cover data from AVHRR. The comparison of simulated and satellite-derived leaf phenology 
and leaf type showed also that both variables were modelled reasonably well by LPJ. Hély et al. [263] obtained 
similar results using LPJ-Guess for the modelization of African Biomes, where simulated annual maximum LAI values 
quantitatively agreed with the averaged ranges observed by the Global Inventory Modelling and Mapping Studies 
(GIMMS; 8 km resolution). In both modelled and measured data, the transition zone along precipitation gradients 
in the tropics and subtropics was well delimited. A recent application of the model in Swiss Alps [264] highlighted 
qualitative discrepancies between the modelled LAI and MODIS estimation after comparison with Swiss FluxNet 
sites. Coarse resolution of MODIS and frequent periods of cloud or snow cover were indicated as the potential 
sources of error. Model performance validation with MODIS data should be careful and alternative data sources 
should be sought in periods with high cloud or snow cover. 

LSM. The Land Surface Model (LSM) examines biogeophysical and biogeochemical land-atmosphere interactions, 
namely the effects of land surfaces on climate and atmospheric chemistry. Muraoka et al. [265] in a 5-years 
experiment analyzed the relationship between spectral vegetation indices (NDVI, EVI, Green-Red Vegetation Index, 
Chlorophyll Index and Canopy Chlorophyll Index) and canopy photosynthetic productivity estimated with LSM 1.0. 
Results highlighted significant correlations between VIs and canopy photosynthetic capacity over the seasons and 
years. Regression analysis between modelled maximum GPP and VIs on sunny days showed an overall strong match  

(𝑟𝟐>0.88). 

ORCHIDEE. The Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) model is a global terrestrial 
biosphere model [266] estimating carbon, water and energy fluxes between land surfaces and the atmosphere. 
Traore et al. [267] tested ORCHIDEE for inter-annual variability of the fraction of absorbed active radiation, the GPP, 
soil moisture, and ET over Africa.  Positive spatial correlation (r > 0.8) between patterns of modelled fAPAR and 
fAPAR3g from AVHRR was found. Nonetheless, despite capturing the patterns of fAPAR within each subregion, the 
model was not able to reproduce the magnitude of the observed spatial fAPAR gradients well. Comparison between 
model and observation was quantified by their spatial correlation, root-mean-square difference, and magnitude of 
their variations in terms of spatial gradients represented by the ratios of modelled to observed standard deviation 
across the grid cells of each subregion. Correlation between the modelled soil moisture versus Soil Moisture from 
MicroWave satellite product (SM-MW) indicated also poor agreement between modelled and satellite measured 
spatial patterns (r < 0.5).   

RHESSy. The Regional Hydro-Ecological Simulation System (RHESSY) [268] is a hydroecological model developed to 
quantify carbon, water and nutrient fluxes at the catchment scale. Hwang et al. [269] applied RHESSy to a small 
catchment in Korea where the model was calibrated and  validated against field measurements. The validated 
model was then extended to the regional scale in order to evaluate the trustworthy of MODIS-derived LAI 
(MOD15A2) and GPP (MOD17A2) products. This interesting example of using a distributed model to assess the 
quality of RS products highlighted a consistent overestimation of MODIS LAI and GPP during the summer season. 
Comparison between MODIS GPP products and in-situ data obtained from flux towers and LAI measurements for 
deciduous broadleaf and evergreen needleleaf forests indicated that MODIS GPP potentially overestimates carbon 
uptake during drought conditions by the lack of a soil water stress term in MODIS GPP algorithm. In order to address 
this gap, recent efforts to estimate soil water potential from the shortwave infrared and near infrared bands of 
MODIS and integrate them into the GPP calculation have been performed 

SEBS. The Surface Energy Balance System (SEBS) [270] is a model for the estimation of turbulent heat fluxes and 
ET. Tian et al. [271] attempted to simulate forest ET using SEBS forced with MODIS products (NDVI and land LST), 
Global Land Surface Satellite (GLASS) Albedo and LAI products.  A two-year (2010–2011) comparison amongst the 
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SEBS outputs, eddy-covariance data (ground reference) and MODIS MOD16 ET product shown poor agreement and 
significant underestimation of ET with respect to MOD16 ET (𝑟2=0.35). 

ZELIG model [256] is an individual tree model that simulates the establishment, annual diameter growth, and 
mortality of each tree on an array of model plots. Song et al. [272] combined the forest succession gap model ZELIG 
and a canopy reflectance model (geometric optical radiative transfer model, GORT) to produce spectral trajectories 
of forest succession from young to old-growth stages. Simulated trajectories were compared with those 
constructed from Landsat Thematic Mapper (TM) imagery. That allowed understanding the potential of mapping 
forest successional stages with remote sensing. Multiple linear regression analysis revealed a synergistic value of 
using multitemporal Landsat imagery to predict distributions of forest succession from young to old-growth stages, 
despite the relatively low overall adjusted Pearson correlation coefficient (𝑟2=0.54).  

In addition to single-model studies, also semi-empirical works or studies based on model ensembles have found a 
suitable source of validation in RS data. Martinez-Lopez et a. [273] developed an open-source empirical spatio-
dynamic wetland plant community model. Wetland plant community maps obtained by means of remote sensing 
from 1992 to 2008 and with overall accuracies between 74% and 89% were used as independent validation data. 
Multiple-resolution-goodness-of-fit metrics were adopted for each validation year, comparing the modelled plant 
community maps and the ones obtained by RS classification. This validation effort identified a good agreement 
between data and model in both in time and space.  

Overall, as denoted by Ito’s historical meta-analysis (1862-2011) [274], RS data is a non-negligible source of 
knowledge on terrestrial ecosystem dynamics, patterns and processes. For instance, it contributed to the 
convergence of estimations on global terrestrial NPP estimations obtained from different sources over time, despite 
the considerable remaining uncertainty. The decrease of the range of variability between RS and dynamic global 
vegetation models estimations seems to be one prominent challenge for present and future terrestrial ecology 
research.  

3.4 EO-based validation of marine models 

Validation of ecological models based on RS is a frequent practice in marine systems. For example, the MOHID 
model outputs for the operational forecasting of the west Iberian coast were validated against the SST product of 
Improving the Description of the Suspended Particulate Matter Concentrations in the Southern North Sea through 
Assimilating Remotely Sensed Data, MyOcean ([275], which, thanks to a combination of infrared and microwave 
sensors, is available also in case of cloud cover.  

The marine ecological models that have profited the most from validation are those describing biogeochemical 
processes and cycles. Such models typically describe local interactions between abiotic and biotic agents (with 
varying degrees of complexity), while at the same time accounting for transport provided by the underlining ocean 
circulation fields. The products that are most often subject to validation by means of RS observations are related 
to measures of primary (most notably chlorophyll) production, but there are also examples referring to 
phytoplankton community composition (PCC)). Some available models that have recently been discussed in the 
literature are BFM, ECOHAM, ERSEM and PISCES.  

BFM. The Biogeochemical Flux Model (BFM) [276] is a numerical model describing the dynamics of the major 
biogeochemical processes occurring in marine systems, including nitrogen, phosphorus, silica, carbon and dissolved 
oxygen cycles, as well as plankton, detritus and benthic biological compartments. A specific feature of the model is 
the subdivision of the planktonic community into functional groups, so as to create a planktonic food web. The 
biogeochemical model can be coupled to standard hydrodynamic codes and applied to different spatial scales. 
Some of the outputs of the model (chlorophyll concentration and primary production) have been validated (either 
qualitatively or by means of quantitative indicators, such as the NSE coefficient, Pearson's correlation coefficient 
and Spearman's rank correlation coefficient) against satellite observations (see [277]–[280] for global-scale 
applications, and [281]–[283] for the Mediterranean Sea). Vichi et al. [278], in particular, performed an extensive 
skill assessment of BFM at the global scale over a 20-year long period using a wide array of quantitative indicators 
(model bias, average absolute error, root mean square differences, Nash-Sutcliffe coefficient, reliability index, 
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Pearson's correlation coefficient). The authors concluded that, in spite of non-negligible biases, during summer the 
model is at least as good a predictor of global chlorophyll concentration as the mean of the data (NSE > 0), and that 
it provides good estimates of the spatial distribution of the maxima of global primary production.  

ECOHAM.  The ECOlogical model, HAMburg (ECOHAM) [284], [285] is a regional coupled hydrodynamic-
biogeochemical model that describes carbon, nitrogen and oxygen cycles, and that includes the concentrations of 
phytoplankton, zooplankton, bacteria, detritus and dissolved organic matter in the water column as prognostic 
variables. The model has been mainly applied over the northwest European continental shelf area. Its chlorophyll 
concentrations outputs have been validated with MODIS observations through the computation of per-pixel errors 
and the evaluation of Pearson's correlation coefficient [286]. 

ERSEM. The European Regional Seas Ecosystem Model (ERSEM) was born as an already complex ecosystem model 
[287] originally developed using "fifty or so state variables types" [288] aimed to describe the biogeochemical 
seasonal cycles in the North Sea. Starting from the description of standard organisms of three different functional 
types (primary producers, consumers and decomposers), the biological part of the model has been progressively 
enriched [289]–[291] by better qualifying compartments (i.e. including size-based categories and describing 
microbial dynamics). The model has been applied to marine regions around the globe, from the North Sea to the 
Mediterranean and tropical seas. The modelling accuracy of its physical component has also been improved, from 
the 1D simulations within a model column to the coupling with the NEMO ocean engine, and used in a variety of 
contexts [292]. ERSEM proved to be quite reliable in reproducing the biogeochemistry in marine ecosystems after 
assimilation of chlorophyll data [248], [293] and remotely-sensed optical data, as the weekly diffuse light 
attenuation [294]. In particular, Edwards et al. [248] presented a quantitative validation exercise of POLCOMS-
ERSEM and NEMO-ERSEM, two coupled hydrodynamic-ecosystem models used for  operational shelf-sea modelling 
in the UK, against satellite-based daily measurements of chlorophyll. Several performance indicators (mean error, 
root mean square error, model bias, normalized standard deviation, Pearson’s correlation coefficient – the last two 
of which also combined in a Taylor diagram) were used in this study. As an example, the authors found Pearson's r 
= 0.29 and r = 0.26 for POLCOMS-ERSEM and NEMO-ERSEM, respectively, in a 2-year-long hindcast exercise 
concerning surface chlorophyll in the North Sea.  

PISCES. The Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) [295], is a biogeochemical 
model of intermediate complexity derived from the Hamburg Model of Carbon Cycle (HAMOCC5) [296]. PISCES 
simulates the cycles of oxygen, carbon and the main nutrients controlling the lower trophic levels of marine 
ecosystems (phytoplankton, microzooplankton and mesozooplankton). The model is intended to represent ocean 
productivity and biogeochemical cycles across major biogeographic ocean provinces at different spatiotemporal 
resolutions; some of its output variables (such as chlorophyll concentration) have been contrasted with satellite 
data [297]. In particular, Schneider et al. [298] compared global marine productivity estimates from this model with 
multi-year satellite measurements of ocean colour normalized standard deviation and Pearson's correlation 
coefficient combined in a Taylor diagram). Values of Pearson's r close to 1 were found for model estimates of both 
primary production and chlorophyll concentration at the global scale.  

3.5 Conclusions and future perspectives 

The validation of ecological models outputs through EO is a reality in terrestrial and marine science. The set of 
variables and models considered for such purpose is increasing with the increasing availability of RS data and 
standardized datasets favouring comparison. Although non-exhaustive, our review points to considerable 
variability in the spatial and temporal congruence between modelled and RS variables according to different 
validation approaches, ranging from qualitative visual comparisons to quantitative rigorous metrics. Also, model 
outputs and RS data frequently differed in their spatial and temporal resolution, and the consequent use of 
downscaling and interpolation techniques generate errors and uncertainties that are rarely considered. Time- and 
space-aggregated variables tended to increase consistency between model outputs and validation data. 
Discrepancies in punctual validation exercises, such as those based on per-pixel metrics, should encourage the 
scientific community to further pursue the setup of standards for the comparison of ecological model and RS data, 
and the identification of sets of comparable variables. 
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Table 4 5 Essential variables (first column) that have been described in some key terrestrial/biogeochemical marine models 
and which have been subject to either a qualitative (second column) or a quantitative (third column) validation against RS 
images. For each reference, the model, the RS data source and the validation metrics (quantitative validation only) are reported 

 

Terrestrial models 

Variable used in validation Qualitative validation Quantitative validation 

Gross Primary Productivity [260] ED2; MODIS-GLASLidar  

[264] LPJ, MODIS  

[264] Space-LPJ, MODIS  

[269] RHESSys, MODIS (MOD17A2) 

[265] LSM, Canopy VIs (Pearson’s 
r2) 

 [299] AquaCrop, Landsat NDVI 
(NSE) 

  

  

Net Primary Productivity  [257] CCSM (CASA, CN), MODIS 
NPP (Pearson’s r2) 

[261] FOREST-BGC , MODIS NPP 
(Kappa statistic) 

[274] DGVM , NOAA-AVHRR, 
MODIS (direct value comparison) 

  

  

Leaf Area Index [264] LPJ and space-LPJ, MODIS  

[269] RHESSys, MODIS  

[257] CCSM (CASA, CN), MODIS 
(normalized RMSE) 

 [263] LPJ-GUESS, GIMMS (direct 
value comparison) 

 

Evapotranspiration [271] SEBS, MODIS   

Land Cover [263] LPJ, AVHRR   

Wetland plant community [273] wetland plant communities 
model; Landsat land cover  

 

Forest succession  [272] ZELIG-GORT; LandsatTM 
forest cover (Pearson’s r2) 
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Biogeochemical marine models  

Variable used in validation Qualitative validation Quantitative validation 

Chlorophyll concentration [277] BFM, SeaWiFS, CZCS  

[283] BFM, SeaWiFS  

[295], PISCES, SeaWiFS  

[296] HAMOOC5, SeaWiFS 

 

[248] ERSEM, SeaWiFS (Taylor 
diagram, model bias) 

[278] BFM, SeaWiFS (NSE) 

[279] BFM, SeaWiFS (Analysis of 
similarities) 

[280] BFM, SeaWiFS (NSE) 

[281] BFM, MODIS (Pearson’s r, 
RMSE, model bias) 

[282] BFM, SeaWiFS (NSE) 

[286] ECOHAM, MODIS (residuals, 
Pearson’s r) 

[293] ERSEM, MODIS (RMSE, model 
bias, Pearson’s r, NSE) 

[297] PISCES, GlobColour (Taylor 
diagrams) 

[298] PISCES, SeaWiFS (Taylor 
diagrams) 

[300] ERSEM and BFM, MERIS and 
MODIS (Taylor diagrams) 

 

 

 

 

 

 

 

 

 

 

 

Net Primary Productivity [278] BFM, SeaWiFS [282] BFM, SeaWiFS (Taylor 
diagrams) 

[298] PISCES, SeaWiFS (direct value 
comparison) 

  

Phytoplankton Community 
Composition, Phytoplankton 
Functional Types 

[277] BFM, SeaWiFS 

[294] ERSEM, SeaWiFS  

 

 

 

 

 

 



 D6.1 Methods in Earth Observation-based modelling 

 

  Page 34 of 72 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

Table 6 Lists of the terrestrial and marine ecosystem models considered and the associated web page 

 

Terrestrial ecosystem models 

Abbreviation Name Link for additional info 

AcquaCrop AcquaCrop http://www.fao.org/land-water/databases-
and-software/aquacrop/en/ 

CCSM Community Climate System 
Model 

http://www.cesm.ucar.edu/models/ccsm4.0
/ 

FOREST-BGC FOREST-BGC http://www.ntsg.umt.edu/node/434 

ED2 Ecosystem Demography 
Biosphere 

https://github.com/EDmodel/ED2 

LPJ Lund-Potsdam-Jena  Model https://www.pik-
potsdam.de/research/projects/activities/bio
sphere-water-modelling/lpjml 

LPJ-GUESS LPJ-GUESS Ecosystem Model http://iis4.nateko.lu.se/lpj-guess/ 

LSM Land Surface Model https://daac.ornl.gov/MODELS/guides/LSM_
guide.html 

ORCHIDEE ORCHIDEE http://forge.ipsl.jussieu.fr/orchidee 

RHESSy  Regional Hydro-Ecological 
Simulation System 

http://fiesta.bren.ucsb.edu/~rhessys/ 

SDGM  Sheffield Dynamic Global 
Vegetation Model 

http://www.biogeo.org/ASJ/SDGVM.html 

SEBS Surface Energy Balance System http://pcraster.geo.uu.nl/projects/applicati
ons/sebs/ 

TRIFFID 
Top-down Representation of 
Interactive Foliage and Flora 
Including Dynamics 

 

http://climate.uvic.ca/model/common/HCT
N_24.pdf 

ZELIG ZELIG Tree Simulator Model http://ecobas.org/www-
server/rem/mdb/zelig.html 

Biogeochemical marine models 

Abbreviation Name Link for additional info 

BFM Biochemical Flux Model http://bfm-community.eu/model-
description-1/model-description 

ECOHAM  ECOlogical model, HAMburg  
http://www.meece.eu/library/ECOHAM4.ht
ml 

ERSEM European Regional Seas 
Ecosystem Model 

http://www.pml.ac.uk/Modelling/Models/E
RSEM 

http://www.fao.org/land-water/databases-and-software/aquacrop/en/
http://www.fao.org/land-water/databases-and-software/aquacrop/en/
http://www.cesm.ucar.edu/models/ccsm4.0/
http://www.cesm.ucar.edu/models/ccsm4.0/
https://github.com/EDmodel/ED2
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
https://www.pik-potsdam.de/research/projects/activities/biosphere-water-modelling/lpjml
http://iis4.nateko.lu.se/lpj-guess/
https://daac.ornl.gov/MODELS/guides/LSM_guide.html
https://daac.ornl.gov/MODELS/guides/LSM_guide.html
http://forge.ipsl.jussieu.fr/orchidee
http://fiesta.bren.ucsb.edu/~rhessys/
http://www.biogeo.org/ASJ/SDGVM.html
http://pcraster.geo.uu.nl/projects/applications/sebs/
http://pcraster.geo.uu.nl/projects/applications/sebs/
http://climate.uvic.ca/model/common/HCTN_24.pdf
http://climate.uvic.ca/model/common/HCTN_24.pdf
http://ecobas.org/www-server/rem/mdb/zelig.html
http://ecobas.org/www-server/rem/mdb/zelig.html
http://bfm-community.eu/model-description-1/model-description
http://bfm-community.eu/model-description-1/model-description
http://www.meece.eu/library/ECOHAM4.html
http://www.meece.eu/library/ECOHAM4.html
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GETM General Estuarine Transport 
Model 

http://www.getm.eu/ 

NEMO Nucleus for European Modelling 
of the Ocean 

http://www.nemo-ocean.eu/ 

PISCES Pelagic Interactions Scheme for 
Carbon and Ecosystem Studies 

http://www.nemo-ocean.eu/ 

http://www.getm.eu/
http://www.nemo-ocean.eu/
http://www.nemo-ocean.eu/
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4. Integrating ecosystem models and Earth observations via data assimilation 

A. Ziemba1, G. El Serafy1, D. Pasetto2 

1Deltares, Delft, The Netherlands 
2Laboratory of Ecohydrology, École Polytechnique Fédérale de Lausanne, Switzerland 
 

One of the main goals of ecological modelling is the numerical reproduction of the dynamics of an ecosystem, 
allowing scientists to better understand past events and generate forecasts of probable future scenarios [301]. This 
is typically achieved by way of statistical models that correlate the ecosystem variables of interest with its 
covariates, or process-based models that are ground on a mathematical description of the physical processes 
governing the system [302]. These mathematical and statistical constructs typically consists of a series of 
interactions among various model components, i.e. input parameters, forcing, and state variables, which should 
yield acceptable reproductions of the real ecological process under analysis. However, the ecological systems being 
reproduced are intricate and complex; high levels of interdependencies exist between the components, thereby 
requiring simplifications and assumption to be used to construct models [303]. Moreover, ecological models suffer 
from the presence of many sources of errors, as initial conditions, atmospheric forcings, model parameters, and 
model structure [301], [304], [305]. These errors may propagate in time amplifying the uncertainty on the model 
outputs. 

As presented in Section 2, RS data have been extensively used in ecology for the spatial description of the model 
inputs, for example by the characterization of the land cover and the atmospheric forcing (precipitation, 
temperature), helping reducing the uncertainties associated to these variables. In this section we describe how RS 
data have been used in ecological applications to improve the model results with the help of Data Assimilation (DA) 
techniques.   

While the calibration and validation of models is a pre-requisite for initial deployment, both the operationalization 
and forecasting ability of models can take advantage of state-updating.  This allows improving the model projections 
in operational applications, where short-term forecasts of the system dynamics are regularly computed. In this 
framework, for the correct interpretation of the model predictions, it is essential to quantify the errors and 
discrepancies within the model outputs. Then, the information provided by RS imagery can be combined into the 
model space to perform an update of the model state variables [9].  This correction of the model outputs with RS 
data allows a reduction of the errors resulting by the mathematical simplification of the real system. Figure 2 
depicts the different sources of errors occurring in both the RS-based observations (in this case chlorophyll 
estimates) and the results of a marine biophysical model, errors that must be taken into account when performing 
the state-update procedure. 



 D6.1 Methods in Earth Observation-based modelling 

 

  Page 37 of 72 

Co-funded by the  
European Union 

ECOPOTENTIAL – SC5-16-2014- N.641762 

 

Figure 2 Sources of errors, and potential loss of data in conventional assimilation of satellite-derived chlorophyll data [306]. 

 

4.1 Data assimilation techniques 

DA techniques have been developed to correct the model predictions and reduce the model output uncertainty by 
incorporating new observations of the system into the model. The main idea is to better track the dynamics of 
systems subject to stochastic forcing by sequentially updating the system state variables with respect to the 
observations, thus having an initial condition more reliable for the subsequent forecast. This approach can be 
extended to the estimation of model parameters, overcoming problems of over-fitting and equifinality which are 
common to many standard calibration techniques [303].  

Since the beginning of the 90’s, due to an increase of the computational power and the availability of RS data, the 
applicability of DA methods have been explored in several environmental fields such as meteorology, 
oceanography, and hydrology [307]–[309], with applications including the estimation of the soil moisture content 
to the river basin hydrology.  

4.1.1 State space model 

Assuming we want to estimate the dynamic of an ecological system which is described by the variables xt, the key 
ingredients common to all DA schemes (see e.g., [201]) are  

1. The dynamical model ℳ that, given the forcing data 𝑞𝑡 and a set of parameters 𝜃, approximates the 
transition (or the forecast) of the state variables of the system, from the estimate at time 𝑡 − 1, indicated 

with 𝑥𝑡−1
𝑎 , to the new state, called forecast or background, and indicated with 𝑥𝑡

𝑓
. In formulas:  

 xt
f = ℳ(xt−1

a , qt, θ) + ηt (1) 

where 𝜂𝑡 accounts for the model error. 

2. The observation model ℋ, that links the model forecast to the real observations 𝑦𝑡 taking into account the 
observation error 𝑣𝑡: 
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 yt
f = ℋ(xt

f, ϕ) + vt (2) 

where ϕ represents the parameters involved in the computation. Note that in most cases the observations 
are indirect or partial measurements of the state variables. 

3. The update step, also called analysis or filtering step, is the core of the DA scheme, and corrects the model 

state variables toward the observations, from the forecast 𝑥𝑡
𝑓

 to the analysis 𝑥𝑡
𝑎, reducing the model 

uncertainty. 

Equations (1) and (2) constitute the state-space model. Various DA methods can be used in step 3 in order to adjust 
the predictions and, if necessary, refine the model parameter θ. As highlighted by Plummer [6] and Bach and 
Mauser [310], at the beginning of the century DA was already seen as a fundamental tool to merge satellite 
measurements into environmental models. As an example, Houser et al. [309] assimilated the surface soil moisture 
obtained with the NASA L band push broom microwave radiometer into the Land Atmosphere Transfer Scheme 
(TOPLATS) following different approaches:  

 Statistical correction: a simple statistical assimilation method that adjusts the modelled surface soil  
moisture mean and  standard  deviation in order to match the observed statistics    

 Newtonian nudging: a forcing term is added to the model equations to force the model toward the 
observations 

 Optimal (or Statistical) interpolation: similarly to kriging, the soil water content computed with the model 
(background) is linearly corrected with respect to the misfit between the observations and model results. 

The main difficulty in the application of optimal interpolation is the computation of the model covariance matrices, 
which requires advanced knowledge of the system. Methods such as auto-regressive moving-average can be used 
in order to compensate for these properties and correlations in space and time [308], [309]. 

4.1.2 Data assimilation: the Bayesian approach and the ensemble Kalman filter 

Modern DA approaches are based on a Bayesian description of the update step. The update step aims in computing 
the probability density function (PDF) of the state variable xt conditioned to the available information, i.e. the set 
of previous observations y1:t = {y1, … , yt}, probability that is indicated with p(xt | y1:t). Of particular interest is the 
computation of the state mean and covariance, x̅t and Pt, respectively.  Bayes law rewrites the filtering PDF as 

  p(xt | y1:t) = C p(yt | xt)p(xt | y1:t−1) (3) 

where C is a normalization constant, p(xt | y1:t−1) is the forecast PDF, representing the temporal evolution of the 
state PDF through the dynamical model, and p(yt | xt) is the likelihood of the newly acquired observation with 
respect the model results. The sequential computation of forecast and filtering PDFs (Eq. 3) has an analytical 
solution only for few particular cases, the most important being the linear state space model having Gaussian errors 
ηt and εt. In this case the forecast and filtering PDFs are Gaussian, and the well-known Kalman Filter (KF) [311] 
describes the mean and covariance matrix of the state variables. Solutions to Eq. (3) for nonlinear models can be 
subdivided in three categories: 

1. Variational methods, such as 3DVAR and 4DVAR, which compute the updates state variables by minimizing 
a cost function associated to Eq. (3). These methods are largely applied to atmospheric models for 
meteorological forecasts, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) 
[312], [313]. The implementation of variational methods is not straightforward, since the solution of the 
minimization problem requires the computation of the Jacobian matrix and the adjoint model associated 
to Eq. (1). 

2. Kalman-based methods, such as the Extended Kalman Filter (EKF) and the Ensemble Kalman Filter (EnKF) 
[314], [315], which approximate the matrices required in the Kalman updated respectively through 
linearizing the model (EKF) and computing an ensemble of model trajectories (EnKF) 

3. Particle filter (PF) methods, as the Sequential Importance Resampling (SIR) [316], which apply Monte Carlo 
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sampling directly to Eq. (3), without the Gaussian assumption that is implicit in Kalman-based approaches. 
De Bernardis et al. [317] recently applied PF for the assimilation of NDVI measurements in a crop 
phonological model.  

The large number and varied implementations of EnKF present in literature demonstrates the adaptability and 
robustness of this DA technique to increase model accuracy through state vector updating [318]. This methodology 
combines the uncertainty within state vectors concerning the initial state, model estimate, and confidence in data 
being assimilated and develops a covariance matrix to weight these three components’ importance unto the 
analysis. However, one of the main limitations of the KF-based techniques is the underline assumption of the 
Gaussian distribution of model state variables and observations. This requirement holds only in the presence of 
linear model functions, assumption that is rarely representative of environmental processes, and that in some cases 
can lead to unphysical distribution of model state variables. Modellers are frequently faced with highly non-linear 
systems, which, as a consequence, demand non-Gaussian assimilation techniques. Alternative approaches include 
the combination of various DA methods [319]–[321] or interaction of various Gaussian processes [322]. Bocquet et 
al. [322] explore the use of gradient cost functions in non-linear applications such as pollution dispersion models. 
In highly non-linear models, alternative approaches as variational methods and PF have proved to be increasingly 
beneficial in ranges of applications, from hydrology to morphodynamics and terrestrial system dynamics [319], 
[320], [323]–[325].  

4.2 Data assimilation repositories 

Given the spread of methodologies through which DA can be implemented, the task of coupling the ecological 
model with multiple DA methods can be a daunting task. There are several research groups that have been 
developing open access repositories having various assimilation methodologies and the interfaces for the coupling 
DA algorithms and an end-user’s models. This section presents an overview of Open Data Assimilation 
(http://www.openda.org), Parallel Data Assimilation Framework (http://pdaf.awi.de), and the Data Assimilation 
Research Testbed (DART) (http://www.image.ucar.edu/DAReS/DART). 

4.2.1 Open Data Assimilation 

Open Data Assimilation (OpenDA) is a repository of algorithms coded in mostly Java with C utilized for 
computationally heavy components. Currently available assimilation methods within OpenDA include KF, EnKF, PF, 
3DVar and the Ensemble Square Root Kalman filter (EnSR), which is a deterministic implementation of the EnKF 
update step. OpenDA provides also methods for the calibration of model parameters, such as simplex, conjugate 
gradients, Does not Use Derivatives (DUD), Powell, and others. Many of these algorithms can be easily implemented 
‘off-the-shelf’ via the interface provided by OpenDA with minimal coding required, exemplifying the modular 
concept of the platform. This straightforward approach is based on the writing and reading of the exchange files 
for the interface, and might result computationally expensive for large applications. OpenDA has also the possibility 
to couple the model and the DA methods on-line, which minimizes the but requires rewriting the source code of 
the model as libraries. Van Velzen et al. [326] explored the fundamental components of the implementation of 
OpenDA and coupled EnKF with the NEMO ocean wave model. In this experiment, a synthetic scenario is created 
utilizing real data from Jason-1 and ENVISAT to assimilate Sea Surface Height of the ocean. Potentialities for 
localization and parallel computing are addressed as well as the assimilation set-up. 

The interaction between OpenDA and the model space can be realized at run-time also through the Open Model 
Interface (OpenMI) (http://www.openmi.org/). The OpenMI standard is a software component which allows 
models to interact and exchange data during computation, allowing the sharing of data at each time-step interval, 
and has already been applied by a range of common model suppliers including hydrological, hydrodynamic, water 
quality, and sediment models from suppliers such as Deltares, DHI, and Innovyze. Because OpenMI allows for 
information exchange at each time-step, it easily interfaces with the assimilation techniques present within 
OpenDA. Ridler et al. [327] looked intensively at the utility of implementing OpenMI with OpenDA, illustrating work-
flow diagrams, and implementation suggestions.  

http://www.openda.org/
http://pdaf.awi.de/
http://www.image.ucar.edu/DAReS/DART
http://www.openmi.org/
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OpenDA has been successfully applied for the assimilation of RS measurements, especially in marine applications. 
For example, Kurniawan et al. [328] improved the simulation of flow vectors and tidal forcings of the Singapore 
Regional Waters by assimilating TOPEX/POSEIDON data, satellite altimetry data from the RADs database, and level-
2 altimetry data products. Serpoushan et al. [329] used the EnKF of the OpenDA toolbox in order to assimilate 
significant wave height and wind data into the wave model SWAN for the Persian Gulf. 

Garcia et al. [330] applies OpenDA for the automated calibration of a costal model (Delft-3D-FLOW) in order to 
determine the chemical properties within the San Quintin Bay (Baja California, Mexico). The water quality is critical 
for the growth and survival of the Japanese oyster Crassotrea gigas, which lives in the bay. The study provided a 
proof of concept that OpenDA is a valuable tool for the automated calibration of coastal models on the sub-meso 
scale.  

4.2.2 Parallel Data Assimilation Framework 

The Parallel Data Assimilation Framework (PDAF) [331] is an open library written in FORTRAN90 supporting a 
parallel implementation of DA schemes. Due to a standard interface, PDAF can be easily coupled to models written 
in different languages [332]. The library includes several variants of the EnKF method, such as the Ensemble 
Transform Kalman Filter (ETKF) and its local version (LETKF). The integration of PDAF algorithms with models 
requires minimal changes within the model source code, leaving the heavy computing numerical components free 
of change, but requiring a small set of routines which are specific for each model and observations (see 
http://pdaf.awi.de).  

Kurtz et al. [333] integrated PDAF with a land-surface-subsurface model. A synthetic study is proposed to exemplify 
the processing power and scalability due to the parallelization of this framework, utilizing a model with 0.8 million 
unknowns. Losa et al. [334] coupled PDAF  to the German Federal Maritime and Hydrographic Agency’s (BSH) for 
the operational forecasting of the North and Baltic Seas. In this case a Kalman-based filter assimilates NOAA’s SST. 
This study involves an in-depth investigation into the implementation of the framework and a quality comparison 
of the results. 

4.2.3 Data Assimilation Research Testbed 

DART is a combination of models, DA algorithms, as well as both real and synthetic observations in a FORTRAN 90 
format that allows for investigation and development of DA. The DART platform is operated and maintained by the 
Data Assimilation Research Section (DAReS) (see http://www.image.ucar.edu/DAReS), and allows for community 
development and integration of algorithms and models into the framework. DART has a number of models ranging 
from land surface models to ocean and atmospheric models, among which are: NOAH Land Surface Model, Model 
for Prediction Across Scales (MPAS) Ocean, Atmosphere components, and Coupled Ocean/Atmosphere Mesoscale 
Prediction (COAMPS). DART includes the most popular DA techniques: Ensemble Adjusted Kalman Filter (EAKF), 
EnKF, and PF. DART provides multiple pre-scripted options for creating synthetic observations (i.e. observations 
obtained from a true run of the model) and also for the localization of both real and synthetic data sets for model 
integration. 

There have been multiple applications of DART to various data sources ranging from high quality in-situ data to a 
wide selection of RS products. Hacker and Angevine [335] assimilated high quality in-situ data from Atmospheric 
Radiation Measurement (ARM) Facility into a single column version of the Weather Research and Forecasting Model 
(WRF). This project’s aim was to determine if the implementation and heavy weighting of the in-situ measurement 
would be able to accurately predict the fluxes occurring at the land air boundary and subsequently determine the 
land surface state. Detailed findings and methods of introducing bias and covariance into the system are explored 
throughout the paper. Mizzi et al. [336] improved the gas retrievals of the Weather Research and Forecasting Model 
with chemistry (WRF-Chem) through the DART assimilation of sparse RS data of carbon monoxide and particulate 
matter, obtained by the Terra/Measurement of Pollution in the Troposphere (MOPITT) and the Infrared 
Atmospheric Sounding Interferometer (IASI) instruments. In this case the spatial detail within each of the RS images 
remains limited and the model is used to provide an estimate in the missing locations. This is a clear example 

http://pdaf.awi.de/
http://www.image.ucar.edu/DAReS
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showing that DA techniques are useful tools to improve the monitoring of a system by using ecological model to fill 
the gap among sparse observations.  

DART has been coupled to the Community Land Model (CLM) for the assimilation of snow cover data products from 
MODIS [337], and for the integration of the environmental variables compiled by the National Ecological 
Observatory Network (NEON) , which have different spatial and temporal resolutions ranging from continental 
satellite imagery to individual organism surveys. 

4.3 Determination of the observation uncertainty 

Earth Observations are typically affected by a certain degree of error, which plays a crucial role in the correction of 
the model outputs [304], [308].  Waller et al. [338] identified four main sources of errors that typically afflict RS 
observations: instrument errors, errors in the observational model (e.g., in radiative transfer models), errors of 
representativity (due to upscaling or downscaling processes between measurement and model meshes, with 
possible loss of information), pre-processing errors introduced when cleaning the data (e.g. removing the effect of 
clouds for radiance). Lahoz and Lannoy [339] discuss the origin of these errors and the method through which they 
spread and propagate from level 0 (raw satellite data)  to the higher level data products. 

The importance of the characterization of the measurement uncertainty is shown in [340] for the estimation of soil 
moisture and contaminant concentrations. As an idea, the analysis step of a DA scheme should strongly correct the 
model outputs toward the observations with low uncertainty, while highly uncertain measurements should 
generate small changes in the model results. 

The Bayesian analysis step that is at the bases of the described DA procedures (VAR, KF, EnKF, PF) requires the 
quantification of the PDF associated to the measurement error 𝑣𝑡 (Eq. 2). The error 𝑣𝑡 is typically characterized as 
an additive Gaussian noise, with zero mean and covariance matrix 𝑅, possibly time-dependent [316]: 𝑣𝑘 ∼ 𝑁(0, 𝑅𝑡). 
The entries of the covariance matrix 𝑅 represent the variance of the single observations and the cross-covariances, 
and completely describe the measurement error for the DA purposes. When dealing with in-situ data, errors of 
measurements collected at different locations are assumed to be independent, thus 𝑅 results in a diagonal matrix 
with elements corresponding to the sensor variances. The computation of 𝑅 is more difficult for the assimilation of 
RS data, since the cross-covariances should be computed at the pixel level. The components of 𝑅 should take into 
account the cumulative effect of all the sources of error identified by [338]. Crosetto et al. [341] proposed a 
procedure to characterized the uncertainty associated to high-level RS products, which is based on:  

1. identification of all sources of uncertainty involved in the computation of the RS products, 

2. probabilistic modelling of these uncertainties, 

3. uncertainty propagation with a Monte Carlo scheme, 

4. sensitivity analysis to assess the impact on the output of the different sources of uncertainties 

and applied the procedure for the detection of burned area based on the Pathfinder AVHRR data. Other applications 
of this uncertainty analysis include the EQeau model estimating the snow water equivalent from satellite C-band 
SAR data [342],  and the uncertainty on the estimation of urban land-use and changes with SPOT data [343]. Even 
if such examples are present in literature, most RS models used to obtain high-level products neglect the 
uncertainty propagation of the instrument and parameter errors, and the product accuracy is only assessed a 
posteriori, by means of costly validations with respect to in-situ measurements or other RS data.  The comparison 
with the output of calibrated process-based models may also help in the evaluation of the observation errors: 
Wanders et al. [324] use the hydrological model SWAP to assess the average standard error on surface soil moisture 
retrievals from different microwave sensors: ASCAT, AMSR-E (Advanced Microwave Scanning Radiometer - Earth 
Observing System) and SMOS. The average standard deviations of the errors (0.049, 0.057 and 0.051 m3m−3 for 
AMSR-E, SMOS, and ASCAT, respectively) are then used in the EnFK assimilation applied to the LISFLOOD 
hydrological model of the Upper Danube Basin [344]. 
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Today, a large effort is devoted in evaluating the a posteriori error, with the goal of improving the algorithms processing the 
RS data by providing a per-pixel quantification of the errors. For example, HYDROPT algorithm [345] processes MERIS data to 
estimate the suspended particulate matter in the sea water, computing the associated confidence intervals in terms of per-
pixel standard deviation obtained from MERIS Level 2 Product Confidence Data flag [346]. El Serafy et al. [9] assimilated these 
RS measurement into the computational water quality and sediment transport model of the Northern Sea (Delft3D-WAQ) with 
the EnKF procedure.  

The computation of the cross-covariances of the observation error at a pixel level presents an even greater challenge. A 
possibility to circumvent this lack of information in the application of DA techniques is to estimate the entries of 𝑅 using the 
statistics associated to the observations-minus-forecast, and observation-minus-analyses residuals. Such an approach aims in 
computing the error statistics before every update using the difference between the model simulations and the observation. 
Desroziers et al. [347] initially proposed this procedure as a diagnostic of the background and observation error variances. 
Recent studies explored the validity of Desroziers’ approach [348], [349], its possible improvement with an ensemble of model 
runs [350],  the combination with EnKF [338], [348], and the application for computing the interchannel observation-error 
correlation for Infrared Atmospheric Sounding Interferometer (IASI) [351]. 

A different and more sophisticated approach described by Plummer [6] and Bach and Mauser [310] consists in coupling the 
ecological model with a radiative transfer model, in such a way to directly compare the model predictions with the RS 
measurements (e.g., level 1 products). The main advantage of this approach is to avoid inconsistencies (in the methodology, 
parameterization, and computational grid) between the ecological products obtained inverting the RS measurements and 
those computed from the process-based model outputs. Moreover this approach entails a better description of the observation 
error, which relays only on the on the standard deviation of the instrument error. This coupled approach has been largely 
employed for hydrological applications with both Kalman-based [352]–[354] and variational-based [355]–[357] assimilation of 
RS radiometer data. De Lannoy and Reichle [245] have recently assimilated SMOS observations of temperature brightness in 
the Goddard Earth Observing System model with the scope of improving the estimation of soil moisture at a global scale with 
the EnKF technique. The coupled approach introduces an additional source of uncertainty in the radiative transfer model, due 
to parameters, structure or soil/vegetation information. De Lannoy and Reichle [245] increase the error standard deviation of 
the measured temperature brightness from 4K to 6K because of this uncertainty. In this case the spatial error correlation is 
assumed isotropic with exponential correlation function, and correlation length estimated following Desroziers’ technique 
[347].  

4.4 Determination of model uncertainty 

The forecast step of DA schemes requires the quantification of the model uncertainty in order to perform an 
effective analysis. However, many ecosystem models do not yet integrate uncertainty analysis into their predictions 
[358]. Refsgaard [301] proposes a general framework and guidelines to be addressed when evaluating uncertainty 
in environmental modelling processes. Within this framework a diligent explanation of the terminology, 
classification, and taxonomy of uncertainty is also presented in order to conform to popular semantics within the 
topic. The general approaches of sensitivity analyses, multi-dimensional uncertainty assessment, inverse and 
multiple model simulations are addressed among others. In details, the main sources of uncertainty to take into 
account when computing the forecast (Eq. 1) are [301]: 

1. Input uncertainty, i.e. the quantification of the errors on the initial condition of the system, 𝑥0, and the 
external forcing 𝑞𝑡, e.g. precipitation [359], surface temperature, land cover/land use [360], etc. 

2. Parameter uncertainty, defined in terms of the probabilistic characterization of the parameters, 𝜃, which 
control the ecological process. 

3. Structural uncertainty, generated by the inadequacy of the model and eventual output bias, which are due 
to approximations and simplifications of the ecological processes occurring in the real system. The 
probabilistic distribution of the error term 𝜂𝑡  (Eq. 3) should take into account this source of uncertainty.   

4. Numerical uncertainty, due to the numerical algorithms and the spatial-temporal discretization used in the 
solution of the model equations. This source of error is frequently ignored in environmental modelling, and, 
thus, implicitly considered in the error term 𝜂𝑡. 

These uncertainties may have either an epistemic nature, i.e. due to lack of knowledge (e.g. on the parameter 
distribution), either a stochastic nature, which is intrinsic of the phenomena under study (e.g. when dealing with 
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climate data). MC-based DA schemes, such as EnKF and particle filters, obtain the forecast step by running the 
model with an ensemble of realizations, each associated to different samples of the inputs, forcing term, and model 
error. The definition of these PDFs is typically straightforward for the input and the forcing, based on direct error 
statistics. For example, a common choice in sampling from rainfall is to consider a multiplicative lognormal noise 
with an assigned temporal and spatial correlation (see, e.g. [245]). More difficult and computational expensive is 
the assessment of the parameter uncertainty. Sensitivity analysis and Bayesian parameter calibration techniques 
help in reducing these epistemic uncertainties, resulting in a more accurate characterization of the parameter PDF.  

The characterization of the structural uncertainty ηt is nontrivial and constitutes one of the main issues in model 
forecasting [308], at the point that many applications neglect this source of uncertainty, thus clearly 
underestimating the model output variances. The simplest approach considers the model error as a Gaussian 
distribution, ηt ∼ N(mt, Qt), where mt is the error mean (in general equal to zero if the model does not present 
systematic bias) and Qt the covariance matrix. As happening for the observation error, the structural uncertainty is 
determined by the error covariance matrix Qt and its correlation scale, which are not known in high-dimensional 
ecological models. Reichle [361] clearly states that the specification of the covariance matrix is largely subjective, 
meaning that a ad-hoc error estimations have been developed for different models and applications. Recent 
technique to tackle this problem try to estimates the model error forcing from DA diagnostics, i.e. from the 
differences between model and observations, similarly to what is done for the observation error. Piccolo and Cullen 
[362] showed that this approach is successful if there are sufficient observations. 

The correct estimation of the model error is fundamental when assimilating RS data into ecological models, since 
it should allow the measurement to follow into the confidence interval of the model outputs. Modelling the 
terrestrial soil moisture at a global scale, De Lannoy and Reichle [245] assign static perturbation statistics for the 
error of the land surface model GEOS-5 CLSM. In this case two model state variables are perturbed with an additive 
noise characterized by fix temporal and spatial correlations. The spatial correlation of the input errors improves the 
smoothness of the state variables and of the consequent DA update. 

El Serafy et al. [9] proposed an iterative procedure to compute the variance and the correlation scale associated to 
the error covariance matrix Qk. The procedure, applied for the uncertainty quantification of the suspended 
particulate matter concentration in the Delft3D-WAQ model, permitted to recognize the dominant spatial 
correlations of the system error during the chosen temporal window of forecast (e.g., one month).  

As the materials presented here within aim to characterize the potential improvements possible through the 
assimilation of RS data into models, it is also paramount to address the potentiality of over-estimating the resulting 
certainty of results from such applications. Reichstein and Richardson [304] proposes a code of best practices in 
order to best analyze the results from a DA application. They investigate an array of data sources from within the 
environmental sciences as explored by other researches and determine that on many occasions uncertainties in 
the data can be of the same order of magnitude as the resulting application of a model-DA. 

4.5 Assimilation of Earth observations in ecosystem models 

DA has been more and more applied in several fields of ecology. As reported for example in [7], DA has been used 
for modelling the spread of infectious diseases, fire, fisheries, and carbon cycle. Lahoz and Lannoy [339] have 
completed an extensive review of DA applications on hydrological models for the terrestrial water cycle, with 
emphasis on the assimilation of RS measurements. The main state variables of LSM include water content and 
temperature of soil moisture, snow, and vegetation. The main RS measurements that have been assimilated for the 
estimation of these variables and for improving streamflow forecasts (e.g. [363]) are  surface soil moisture, snow 
cover or albedo, snow water equivalent, backscatter, brightness temperature, surface soil temperature, 
evapotranspiration, and LAI [339]. Despite the recent advances in coupling RS data to hydrological models, 
Vereecken et al. [364] addresses the limitations of assimilating RS soil moisture, as its dependency from vegetation 
and soil roughness which may cause bias in the measurements. The coarse spatial resolution, typically in the order 
of several or more kilometres, and the low penetration depth of the sensors is not enough to make a marked 
improvement when correcting the results of hydrological models.  Recent applications of EnKF to hydrological 
models are focusing on assimilation procedures of soil moisture products (mainly derived from SMOS) capable of 
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removing possible measurement and model biases  (e.g. [321], [365]–[367] or directly assimilating brightness  
temperature [245]. 

Carbon cycle models, i.e. those models that aim to quantify the carbon exchanges between the terrestrial Earth 
surface, the vegetation and the atmosphere, often together with water and energy fluxes, have been increasingly 
exploiting DA techniques [7], [368]. Main output of interest of these models are GPP and NPP, which estimation 
has been  improved assimilating both in situ-measurements (e.g. eddy covariance fluxes), and RS measurements 
such as NDVI [369], [370] and surface temperature measurements [371]. 

RS data have been largely employed in the realm of agroecosystem modelling since LANDSAT-1 was launched in 
1972, which enabled the first RS measurements of several vegetation indices.  Dorigo et al. [372] presented an 
encompassing blend of state and driver biophysical parameters as indicators for various ecological functions and 
processes, highlighting that RS measurements of LAI, fractional cover (fCOVER), fraction of photosynthetically active 
radiation absorbed by the canopy (fAPAR), and plant chlorophyll concentration are among the most important 
canopy state variables and therefore frequently assimilated in agroecosystem models. As an example, [310] refined 
the biomass, canopy height, and yield obtained from a land surface model through assimilation of multiple RS 
products including land classification from LANDSAT/TM, and ERS-derived soil moisture content. 

KF-based techniques have been largely applied for the assimilation of RS measurements in ocean models. As an 
example, Belyaev et al. [373] used KF to improve the results of the large scale oceanic model NOAA-GFDL applied 
to a tropical area of the Atlantic Ocean. In this case the result of the assimilating ocean temperatures collected 
through the PIRATA project is a small but clear improvement in the outputs [373]. EnKF technique has been 
successfully used in a number of modelling applications in conjunction with MERIS satellite data in order to reduce 
modelling errors and achieve a better fit of the output with respect to in-situ observations [8], [374]–[376]. EnKF 
has been used to combine MERIS SPM data from ESA's ENVISAT satellite into the Delft-3D Water Quality model 
[377], in order to update the modelled SPM over the North Sea and Dutch coastal waters [8]. One of the key results 
of this study is that the uncertainty and errors within the model space and both the raw and gridded RS data must 
be carefully calculated in order to properly weight the two against one another and achieve proper updates at each 
time step [8]. 

4.6 Conclusions and future perspectives 

DA techniques are computationally solid approaches for the sequential update of the model state variables (and 
possibly model parameters) towards the newly acquired observations, keeping into account the distribution of the 
model and observation errors. DA techniques represent ideal tools to incorporate into ecosystem models the large 
amount of information that is continuously received from space. The increased number of ecological applications 
adopting DA strategies, in particular ensemble-based methods such as EnKF, to improve the system predictions 
demonstrates the general interest of the community and the advantages of these approaches. Two main 
recommendations emerge from the proposed review. First, to fully explore the variety of DA techniques available 
in literature, the development of ecosystem models should move in the direction of structure the codes in a way 
that they can be easily connected to the available platforms containing DA and calibration algorithms, such as the 
described DART, OpenDA, and PDAF. In fact, the small investment required in terms of updating the model codes 
is greatly compensate by the accessibility to a number of state of the art, well tested algorithms useful for the 
assimilation of RS data and the assessment of model uncertainty. We also remark that, except for the presence of 
few examples in hydrological applications, the strategy suggested by Plummer [6] of directly coupling ecosystem 
models with reflectance transfer models is rarely adopted in ecological applications. Although the direct coupling 
would required the calibration of a larger number of model parameters, the possibility of comparing the simulated 
reflectance with the RS measurements would allow a better description of the observation uncertainties, as well as 
decreasing the errors associated with mismatches and interpolations of model and RS grids. The limited use of this 
approach is probably due to the large availability of free global RS images, in conjunction with the difficulties 
associated with the calibration of physically-based reflectance transfer models. Collaborations between the remote 
sensing and the ecosystem modellers communities should help to overcome these difficulties. 
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6. Annex 1 

Author 
Reference 

No. 
Extent Goal of the study Opt. Sensor Radar sensor Map/output resolution Technical algorithm of model 

Gao et al. 2013 221 

local 
(29 experimental 
plots; around 6000 
m² each) 

- Estimating Leaf Area 
Index, height, biomass 
and other plant 
variables of maize using 
optical and radar 
sensors 

HJ-1 (30x30 m) 
RADARSAT-2 
(range: 5.2; 
azimuth: 7.9 m) 

around 50 x 50 m (size of 
experimental plots) 

- Linear regression analysis of optical 
reflectance values and SAR backscattering 
coefficients with plant variables of maize 

Dusseux et al. 
2014 

222 
local 
(catchement area of 
61.5 km²) 

- Dicriminating grassland 
and crop land -> 
comparing single use of 
optical data, SAR data 
and combined used for 
classification 

SPOT 5 (5x5 m 
& 10x10 m) 
Landsat TM5 
(30x30 m) 

RADARSAT-2 
(range: 12 m; 
azimuth: 8 m) 

Field scale (different spatial 
resolution of input data have 
been harmonized using the 
boundaries of the fields 
determined by orthophotos)  

- Classification of derived variable using the 
Support Vector Machine (SVM) 
- LAI and fCOVER retrieved using PROSAIL 
radiative transfer model (coupling of 
PROSPECT and SAIL models) 

Koppe et al. 2012 223 

local 
(four fields; average 
around 2.5 and 4.5 
ha) 

- Estimating winter 
wheat biomass using 
hyperspectral and SAR 
data -> comparing single 
use and combined use 

EO-1 Hyperion 
(30x30 m) 

Envisat ASAR 
(12.5x12.5 m) 

Field scale (measured and 
extracted variables were 
averaged regarding parcels of 
homogenous management; 
around 6 parcels per field) 

- Linear regression models between surface 
refelction as well as backscatter and wheat's 
standing biomass were established 
- multible regression analysis: combining 
hyperspectral indices and microwave 
backscatter as a function of crop parameters 

Revill et al. 2013 227 

continental                                
(six different 
European field sites; 
field sizes varied 
from 1.5 to 97.6 ha) 

- Improvement of 
carbon cycling model 
using LAI values 
estimated  by optical 
and radar data -> singel 
and combined use 
tested 

Combined 
SPOT-2 and 
SPOT-4 data 
(20x20 m) 

ERS-2 (12.5 m) 
Field scale (model improvement 
was tested at the six different 
fields) 

- C cycle simulated using the Soil-Plant-
Atmosphere (SPA) model modified for carbon 
allocation and croplands 
- updating of SPA model using LAI estimates 
via an Ensemple Kalman Filter approach 

Attarchi & 
Gloaguen 2010 

228 

local 
(99 plots having a 
size of 60x60 m in 
the study area 
approximately 20x26 
km) 

- Improving the 
estimation of above 
ground biomass in 
mountaineous areas 
using optical and radar 
data 

Landsat ETM+ 
(30x30 m) 

ALOS/PALSAR 
(12.5x12.5 m) 
SRTM (90x90 m) 

30 m 

- Linear regression models including 
corrected spectral and SAR data and their 
derived products to estimate above ground 
biomass 
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Huang et al. 
2014 

229 

regional 
(non-forested areas 
in Yellowstone 
National Park; 107 
circular plots with a 
radius of 17 m) 

- Estimation of 
sagebrush, herbaceous 
and bare ground cover 
by fusing optical and 
radar data 

AVIRIS (17x17 
m) 
Landsat ETM 
(30x30 m) 

AirSAR (10x10 m) 10 m 

- optical and radar data as well as derived 
products used for land cover classification 
based on threshold values, decision trees, 
linear interpolation and local knowledge 

Xing et al. 2014 230 

local 
(size of study area: 
1.174 km²; 92 
sample sites: 30x30 
m; 3 sample plots 
per site: 0.5x0.5 m) 

- Estimation of above 
ground biomass in a 
mixed vegetation area 
using optical and radar 
data (arid region)  

Landsat-5 TM 
(30x30 m) 

Envisat ASAR 
(range: 30 m, 
azimuth: 30 m, 
pixel size: 12.5 m) 

30 m 
- modified water cloud model (WCM) 
- radar data provide soil information and 
optical data measure vegetation coverage 

Svoray & 
Shoshany 2003 

233 

local 
(study area: size 
unknown; 16 sample 
sites: 5 ha; 100 
sample plots per 
site: 0.625 m² ) 

- Estimation of above 
ground biomass of 
herbaceous vegetation 
in a heterogenous 
semiarid region 

Landsat TM 
(30x30 m) 

ERS-2 SAR (no 
information) 

30 m 
- modified water cloud model (WCM) 
- radar data provide soil information and 
optical data measure vegetation coverage 

Chakraborty et 
al. 2014 

235 
regional 
(2 sites a 3375.1 and 
6420.6 km²) 

- Monitoring 
submerging of 
vegetation biomass due 
to floods using radar 
and optical data 

MODIS 
(500x500 m) 

AMSR-E (C-band: 
75x43 km, X-band: 
51x29 km) 

Resolution of radar data 

- radar data have been employed in a 
radiative transfer model 
- optical data provided information on 
dominant land cover fractions 

Rangoonwala et 
al. 2016 

236 

regional 
(204 km Atlantic 
Ocean cosatline of 
New Jersey; research 
focused on central 
and southern zones - 
no exact data on 
extent) 

- Assessing linkages of 
Hurican Sandy surge 
persistence and changes 
in marsh conditions 
along the cosatline by 
combining radar and 
optical data 

SPOT 5 (10x10 
m) 
MODIS 
(232x232 m) 

TerraSAR-X (up to 
18x18 m) 
COSMO-SkyMed 
(30 m) 

SPOT 5, TerraSAR-x and COSMO-
Sky Med images were registered 
to USGS digital orthophote 
quarter quadrangles (resolution: 
1x1 m); probably these data have 
also been downscaled to the 1-m 
ground resolution 

- SPOT data were converted using the 
Atmospheric and Topographic Reduction 
(ATCOR) radiative transfer model to 
determine marsh canopy reflectance 
- MODIS data used to determine vegetation 
indice (NDVI) 
- radar data have been employed in the 
National Oceanic and Atmospheric 
Administration (NOAA) model to determine 
surge extent and persistence 
- different outputs have been spatially 
associated using a cross-correlation 
procedure 
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7. Annex 2 

Author 
Reference 

No. 
Extent Goal of the study Opt. Sensor Radar sensor 

Map/output 
resolution 

Technical algorithm of model 

Gao et al. 2013 221 

local 
(29 experimental 
plots; around 6000 
m² each) 

- Estimating Leaf Area 
Index, height, biomass 
and other plant 
variables of maize using 
optical and radar 
sensors 

HJ-1 (30x30 m) 
RADARSAT-2 (range: 
5.2; azimuth: 7.9 m) 

around 50 x 50 m 
(size of experimental 
plots) 

- Linear regression analysis of optical 
reflectance values and SAR backscattering 
coefficients with plant variables of maize 

Dusseux et al. 2014 222 
local 
(catchement area of 
61.5 km²) 

- Dicriminating 
grassland and crop land 
-> comparing single use 
of optical data, SAR 
data and combined 
used for classification 

SPOT 5 (5x5 m & 
10x10 m) 
Landsat TM5 
(30x30 m) 

RADARSAT-2 (range: 
12 m; azimuth: 8 m) 

Field scale (different 
spatial resolution of 
input data have been 
harmonized using the 
boundaries of the 
fields determined by 
orthophotos)  

- Classification of derived variable using 
the Support Vector Machine (SVM) 
- LAI and fCOVER retrieved using PROSAIL 
radiative transfer model (coupling of 
PROSPECT and SAIL models) 

Koppe et al. 2012 223 

local 
(four fields; average 
around 2.5 and 4.5 
ha) 

- Estimating winter 
wheat biomass using 
hyperspectral and SAR 
data -> comparing 
single use and 
combined use 

EO-1 Hyperion 
(30x30 m) 

Envisat ASAR 
(12.5x12.5 m) 

Field scale (measured 
and extracted 
variables were 
averaged regarding 
parcels of 
homogenous 
management; around 
6 parcels per field) 

- Linear regression models between 
surface refelction as well as backscatter 
and wheat's standing biomass were 
established 
- multible regression analysis: combining 
hyperspectral indices and microwave 
backscatter as a function of crop 
parameters 

Revill et al. 2013 227 

continental                                
(six different 
European field sites; 
field sizes varied 
from 1.5 to 97.6 ha) 

- Improvement of 
carbon cycling model 
using LAI values 
estimated  by optical 
and radar data -> singel 
and combined use 
tested 

Combined SPOT-2 
and SPOT-4 data 
(20x20 m) 

ERS-2 (12.5 m) 

Field scale (model 
improvement was 
tested at the six 
different fields) 

- C cycle simulated using the Soil-Plant-
Atmosphere (SPA) model modified for 
carbon allocation and croplands 
- updating of SPA model using LAI 
estimates via an Ensemple Kalman Filter 
approach 

Attarchi & Gloaguen 
2010 

228 

local 
(99 plots having a 
size of 60x60 m in 
the study area 
approximately 20x26 
km) 

- Improving the 
estimation of above 
ground biomass in 
mountaineous areas 
using optical and radar 
data 

Landsat ETM+ 
(30x30 m) 

ALOS/PALSAR 
(12.5x12.5 m) 
SRTM (90x90 m) 

30 m 

- Linear regression models including 
corrected spectral and SAR data and their 
derived products to estimate above 
ground biomass 
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Huang et al. 2014 229 

regional 
(non-forested areas 
in Yellowstone 
National Park; 107 
circular plots with a 
radius of 17 m) 

- Estimation of 
sagebrush, herbaceous 
and bare ground cover 
by fusing optical and 
radar data 

AVIRIS (17x17 m) 
Landsat ETM 
(30x30 m) 

AirSAR (10x10 m) 10 m 

- optical and radar data as well as derived 
products used for land cover classification 
based on threshold values, decision trees, 
linear interpolation and local knowledge 

Xing et al. 2014 230 

local 
(size of study area: 
1.174 km²; 92 sample 
sites: 30x30 m; 3 
sample plots per site: 
0.5x0.5 m) 

- Estimation of above 
ground biomass in a 
mixed vegetation area 
using optical and radar 
data (arid region)  

Landsat-5 TM 
(30x30 m) 

Envisat ASAR (range: 
30 m, azimuth: 30 m, 
pixel size: 12.5 m) 

30 m 
- modified water cloud model (WCM) 
- radar data provide soil information and 
optical data measure vegetation coverage 

Svoray & Shoshany 
2003 

233 

local 
(study area: size 
unknown; 16 sample 
sites: 5 ha; 100 
sample plots per site: 
0.625 m² ) 

- Estimation of above 
ground biomass of 
herbaceous vegetation 
in a heterogenous 
semiarid region 

Landsat TM 
(30x30 m) 

ERS-2 SAR (no 
information) 

30 m 
- modified water cloud model (WCM) 
- radar data provide soil information and 
optical data measure vegetation coverage 

Chakraborty et al. 2014 235 
regional 
(2 sites a 3375.1 and 
6420.6 km²) 

- Monitoring 
submerging of 
vegetation biomass due 
to floods using radar 
and optical data 

MODIS (500x500 
m) 

AMSR-E (C-band: 
75x43 km, X-band: 
51x29 km) 

Resolution of radar 
data 

- radar data have been employed in a 
radiative transfer model 
- optical data provided information on 
dominant land cover fractions 

Rangoonwala et al. 
2016 

236 

regional 
(204 km Atlantic 
Ocean cosatline of 
New Jersey; research 
focused on central 
and southern zones - 
no exact data on 
extent) 

- Assessing linkages of 
Hurican Sandy surge 
persistence and 
changes in marsh 
conditions along the 
cosatline by combining 
radar and optical data 

SPOT 5 (10x10 m) 
MODIS (232x232 
m) 

TerraSAR-X (up to 
18x18 m) 
COSMO-SkyMed (30 
m) 

SPOT 5, TerraSAR-x 
and COSMO-Sky Med 
images were 
registered to USGS 
digital orthophote 
quarter quadrangles 
(resolution: 1x1 m); 
probably these data 
have also been 
downscaled to the 1-
m ground resolution 

- SPOT data were converted using the 
Atmospheric and Topographic Reduction 
(ATCOR) radiative transfer model to 
determine marsh canopy reflectance 
- MODIS data used to determine 
vegetation indice (NDVI) 
- radar data have been employed in the 
National Oceanic and Atmospheric 
Administration (NOAA) model to 
determine surge extent and persistence 
- different outputs have been spatially 
associated using a cross-correlation 
procedure 

 


