

ECOPOTENTIAL: Improving future ecosystem benefits through Earth Observations Starting date: 1st June 2015, Duration: 4 years, 47 partners

Coordinator: Antonello Provenzale Institute of Geosciences and Earth Resources, National Research Council of Italy Co-Coordinator: Carl Beierkuhnlein Biogeography, BayCEER, University of Bayreuth, Germany Project Manager: Carmela Marangi Institute of Applied Mathematics, National Research Council of Italy External Communication Officer: Mariasilvia Giamberini Institute of Geosciences and Earth Resources, National Research Council of Italy

www.ecopotential-project.eu

ECOPOTENTIAL: "back to the future"

Ecosystems are seen as "one physical system" with their environment, with strong geosphere-biosphere-hydrosphere interactions

ECOPOTENTIAL in a nutshell

- Focus on a network of Protected Areas
- Identify relevant ecosystem services and focus on supporting ecosystem functions/processes
- Build EO data products to characterize ecosystems state and changes
- Collect existing in-situ data and identify data gaps
- Quantify changes in the ecosystems
- Build models capable of assimilating EO and in-situ data, capable to include uncertainty estimates
- Estimate the future state of ecosystems

ECOPOTENTIAL in a nutshell

- Build knowledge with relevant stakeholders: PA staff, environmental managers, etc
- Define policy options and the requirements of future protected areas
- Make all results available to the community, contributing to GEO/GEOSS (GEO ECO, GNOME) through a Virtual Laboratory Platform
- Produce dissemination material at multiple levels
- Develop a pan-European view starting from the information gained at PA level

the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.

Working in partnership with 23 Protected Areas in Europe and beyond

Union's Horizon 2020 research and innovation programme under grant agreement No 641762

the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.

Regions

Working in partnership with 23 Protected Areas in Europe and beyond Co-location and joint use of LTER sites by Biogeographic

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

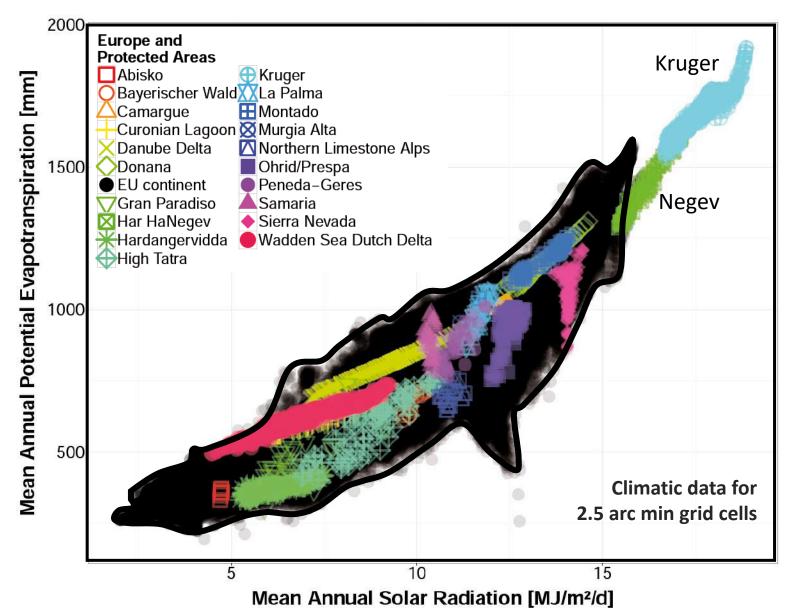
ECRA General Assembly, 7-8 March 2017, Bruxelles, Belgium

Spatial analysis is foused on:

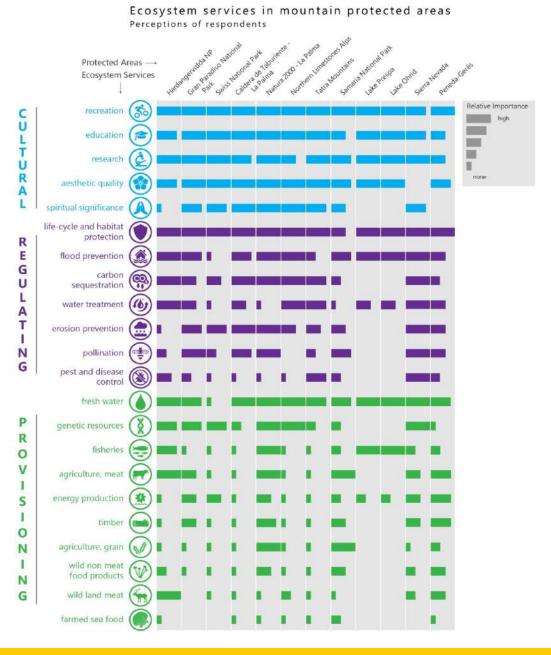
- Terrestrial and Coastal Ecosystems (no "marine only" ecosystems)
- European Continent (without Greenland)
- National Parks (NP)
- UNESCO Man and Biosphere Reserves (MAB)
- Natural UNESCO World Heritage Sites (WHS natural)

Data Sources are:

- World Database on Protected Areas (IUCN and UNEP-WCMC 2016)
- Database on National Designated Areas (EEA 2016)
- Additional literature and web search



Hofmann, Beierkuhnlein et al, 2016, in prep 2017



ECOPOTENTIAL and climate

Results of the questionnaire sent to PA managers/staff with the collaboration of ECOPOTENTIAL partners working in each PA

Synthesis report based on results from questionaires to PA staff Main findings:

- The Ecosystem Service (ES) approach is used little in PA management.
 - Lack of knowledge
 - Lack of ES included in formal goals and policy frameworks relevant for PAs (Ecosystem preservation and tourism/recreation are the main formal goals of PAs)
 - Respondents were positive to the ES approach and identified a range of important ES provided by their PAs
- The use of EO tools in the management of PAs is overall low but has (eco)potential to be enhanced.
- There are **good cases of use of EO tools** in particular PAs and a **strong willingness to share experiences**.
- A range of **training resources**, as well as software and hardware tools, are required for the PAs to be able to effectively apply the technical tools provided by ECOPOTENTIAL: access to data is often good, but lack of capacity to analyse and use the data.
- PAs requested more knowledge on how to use of EO tools and Remote Sensing data for management in particular, in relation to their formal goals.

What do we study in the Protected Areas:

Current state of Protected Areas from Remote Sensing

Ongoing changes in the ecosystems and environment of the ECOPOTENTIAL Protected Areas

Future projections on the state of the ecosystem in the ECOPOTENTIAL Protected Areas

Narratives related to stakeholder needs: The Storylines

Narratives for an integrated approach with stakeholders: The ECOPOTENTIAL storylines

- Focus on given Protected Area(s) and identify the main Ecosystem Services of interest and the functions/processes supporting them
- Identify indicators for the state of the ecosystem and of ecosystem processes (DPSIR SoE), for the most important control factors on the ecosystem, for the main (humaninduced) pressures (DPSIR Pressures)
- Identify the most critical/endangered/fragile ecosystem components and identify indicators of the impacts/response of ecosystem structure, functions and services (DPSIR Impacts)
- Identify, retrieve, collect and possibly extend the data base (in situ and Remote Sensing) for the above indicators and the relevant Essential Variables
- Identify societal and management responses (DPSIR Responses) and develop conservation and management policy options

An arid/semi-arid storyline: Spatial-temporal dynamics of savanna ecosystems as a life support system to wildlife and livestock production in and around Kruger National Park (A. Ramoelo, CSIR, SA)

Ecosystem service	Ecosystem property needed to keep / improve the service	Supporting ecosystem characteristics		
Ecotourism	Species abundance and diversity e.g. presence of wild animals (Elephants, Rhino, Buffalo, Lion, Leopards etc),	healthy state of open grasslands and woodland habitats and vegetation diversity		
Grazing and Browsing resources (wild and domesticated animals)	Grass and tree foliage or cover	Quality and quantity grass and leaves for grazing and browsing respectively.		
Woody resources (energy and timber)	Woodland components (trees)	Quantity and species of trees		
Water	Vegetation productivity, soil quality	Vegetation cover, low alien species cover		

Driver of change	Indicator	Method [reference] (type)*
Fire	Burnt area – frequency of	http://www.afis.co.za/
	fires	
Grazing activities	Biomass and quality	Ramoelo et al. (2012; 2015) (R)
Elephant tree pushovers	Tree cover (%)	Wessels et al. (2011), Mathieu et al. (2013), Naidoo et al. (2014) (R,M)
Fuel wood collection	Tree cover (%) or woody biomass (tons/ha)	Mathieu et al. (2013), Naidoo et al. (2014), Mograbi et al. (2015) (M)
Bush encroachment	Tree cover (%)	Naidoo et al. (2014) (R)
Land use – settlement and agriculture	Land cover or use	National Land Project – SA (R)

An arid/semi-arid storyline: Spatial-temporal dynamics of savanna ecosystems as a life support system to wildlife and livestock production in and around Kruger National Park (A. Ramoelo)

DPSIR Type	Indicator Variable	Nearest Essential Variable (and originating typology)		
State	Herbaceous biomass (g/m ²)	Above ground biomass (ECV)		
	Leaf nitrogen (%)	Ecosystem function (EBV)		
	Tree biomass (ton/ha)	Above ground biomass (ECV)		
	Tree cover (%)	Habitat structure (EBV)		
	Habitat structure/type	Habitat structure (ECV)		
	Vegetation productivity – LAI	LAI (ECV)		
	Precipitation dynamics - Drought	Precipitation (ECV)		
	Landscape diversity index	Land cover (ECV)		
	Water and carbon fluxes	Evapotranspiration, soil moisture, carbon fluxes (ECV)		

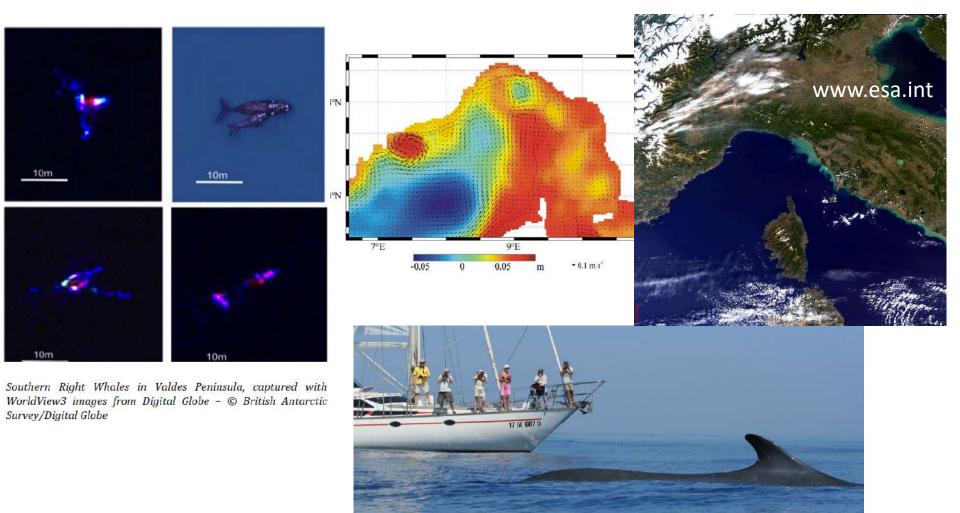
Link with Essential Variables

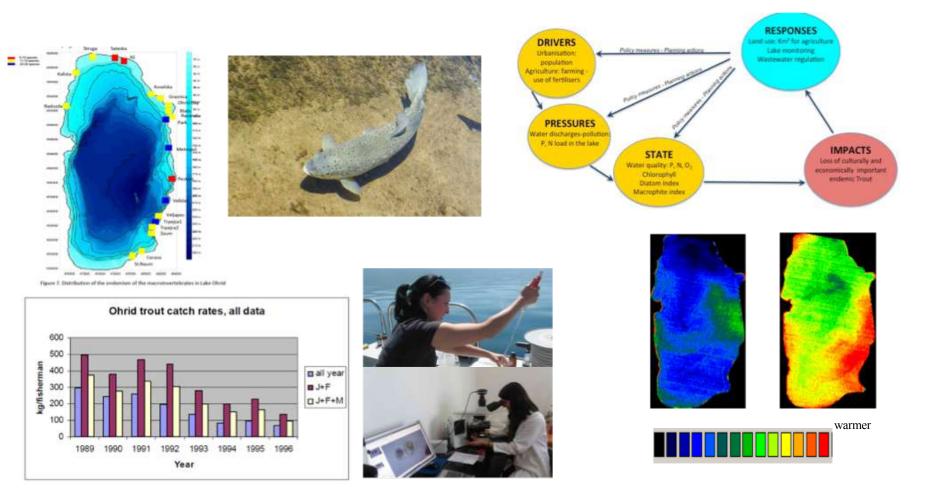
A mountain storyline: high-altitude environments as a life-support system to wild herbivores (S. Imperio, T. Bargmann)

							2	E
-			1	A		100	1	- Aller
	-	2		City of	- ar	A.	-9	
	ALP DJ		cumula		wfall			
5'	× 10	10'		15	7 7		18	
1	-	-	C. T. LE	North Contraction	sh s			
1. 19	Contraction of the		1.0		~	N , N	Sec.	
1 - 14		-	58	N. AN		45	-2	
m	7		2 Mar	1 A.	Line	1		當
5		10'	_	15	mm			μř.
0	100	200	300	400	500			
	A				12 16		2013 V	
	C.					122		

Ecosystem service	Ecosystem property needed to keep / improve the service	Supporting ecosystem characteristics		
Sustainable tourism (GPNP, HNP) / hunting (HNP)	 Traditional landscape Biodiversity Presence of flagship species (Alpine ibex, chamois, wild reindeer) 	 Floristic, arthropod and avian diversity Wild ungulates distribution and abundance Disturbance regimes 		
Habitat for rare and/or endemic species and/or of cultural value	 Micro-habitat diversity Low human disturbance rates (tourism, pollution, land management) 	 Species and community population dynamics Phenology Precipitation and temperature regimes Disturbance regimes 		
Food production	Cattle (GPNP), sheep (HNP) Wild meat production (reindeer, grouse, fish)	 Gross primary production Plant forage value 		
Water provision	• Soil moisture • Water budget	 Precipitation and temperature regime Soil water content Evapotraspiration 		
Carbon balance/storage	Carbon cycling between soil, vegetation and atmosphere	CO ₂ /CH ₄ exchanges Soil organic carbon Resilience to extreme events and to soil freeze-thaw cycles		

A coastal storyline: the Wadden Sea improving coastal lagoon benefits under multiple pressures (G. El Serafy, H. Hummel, A. Ziemba)

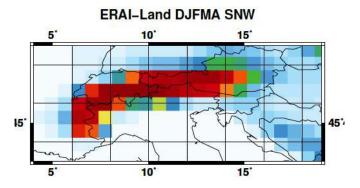



A marine storyline: the Pelagos sanctuary (V. Drakou, L. Pendleton, W. Appeltans)

Fin Whale observed in the Pelagos Sanctuary – Photo ©: F. Bendinoni – Thetis Research Institute

A freshwater storyline: ESS approach for the sustainable management of Lake Ohrid (S. Giamberini, O. Tasevska, I. Baneschi)

An emerging thread: ongoing changes in PAs **Meteo-climatic drivers** from gridded and local data LC/LU, vegetation, turbidity, chlorophyll-a and other info from Remote Sensing In situ data on ecology/biology/pop.dyn./geomorphology/hydrolog y/water

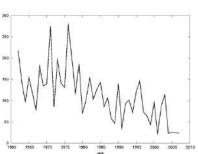

Example of PA changes: the Gran Paradiso National Park

Gridded meteo-climatic datasets

E-OBS: 0.25°, EURO4M: 0.05° (only prec) HISTALP, OI (Piedmont): 0125°

Model outputs and reanalyses

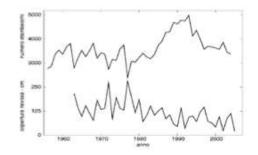
CMIP5, EURO-CORDEX, ERA-Interim/Land and 20CRv2, MERRA, NCEP

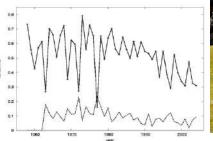


Satellite products e.g. snow: Global SWE, AMSR-E vegetation, NDVI, LC/LU

Local meteo-climatic datasets

about 30 temperature sensors 2 meteo stations

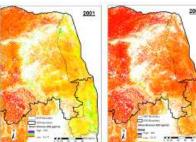


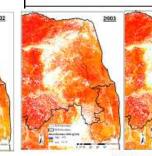


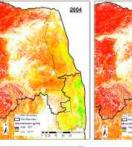
Water/carbon fluxes and phenology

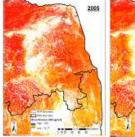
- eddy covariance
- flux chambers

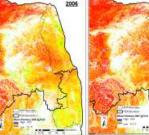
Ecosystem and population dynamics ibex, chamois, vegetation, biodiversity

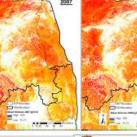







Spatial-temporal dynamics of savanna ecosystems a life support system to wildlife and livestock production in and around Kruger National Park (A. Ramoelo, CSIR)


SoE	Indicator	Method [reference] (type)*
Distribution of grazing	amount of grass per unit	empirical techniques [Ramoelo et al.
and browsing resources in the semi-arid	area (biomass)	2015] (M)
environments	percentage of nutrients in	empirical techniques [Ramoelo et al.
	dry matter (leaf N (%))	2012; 2015] (M)
	percentage of tree cover per unit area (%)	field, LiDAR and SAR empirical techniques [Mathieu et al. 2013, Naidoo et al. 2014, Urbazaev et al. 2015] (M)
	above ground woody biomass per unit area (ha) & woody volume as biomass proxy	field, LiDAR and SAR empirical techniques [Mathieu et al. 2013, Naidoo et al. 2014] (M)



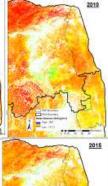
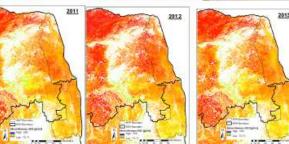
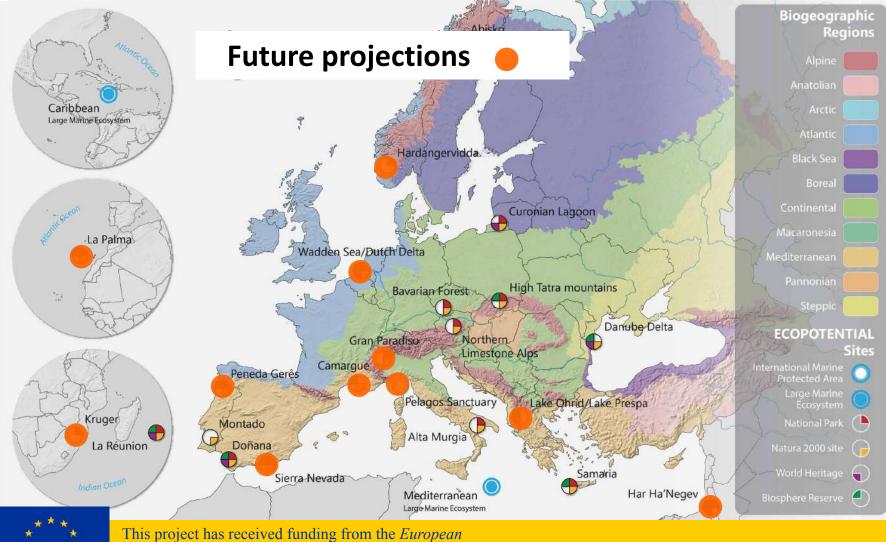



Figure 2: Time series of mean annual biomass data based on 500m spatial resolution MODIS data (2001 – 2015).

PA changes: Selected RS variables

Type of ecosystem	RS variable		
	NDVI		
Mountains	Snow cover (duration)		
	Gross primary production		
	Chlorophyll a concentration		
Coastal/marine	Sea Surface Temperature		
	Total suspended solids		
	NDVI		
Arid ecosystems	Soil moisture		
	Tree cover density (%)		



the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.

Working in partnership with 23 Protected Areas in Europe and beyond

Union's Horizon 2020 research and innovation programme under grant agreement No 641762

Scale mismatch: the downscaling-impact chain Euro-CORDEX – 11 km – 5 members **5 CMIP5 GCMs, RCP4.5, RCP8.5** Total precipitation annual mean 1951-2007 48° -180° -120° -60° 0 60° 120° 180 60 45° 6 42° mm/ 0

mm/dav

12

Specific eco models for each PA

n°

120

60°

180

10

-180 -120 -60

2

n

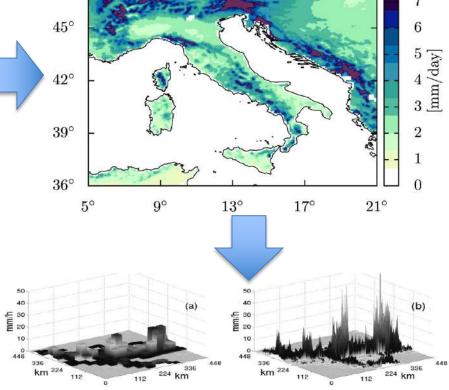


FIG. 10. (a) A snapshot of the forecasted rain field obtained from the LAM forecast and (b) one example of a downscaled field obtained by application of the RainFARM. The vertical scale indicates precipitation intensity (mm h^{-1}) and it is the same for the two fields.

Stochastic downscaling for prec Interpolation with orography correction for temp

РА	Ecosystem function	Model	Variables	Spatial resolution	Temp. resolution
Camargue	marsh hydrology	locally developed	Precipitation	1 degree obtained by	Monthly
hogo duu da hadu ana 🕊 ni ni ni da		hydro model	Evapo-transpiration	aggregating CORDEX runs at 0.11°	
			Wind		
	state of the lower		Radiation		
Wadden Sea	trophic levels of the	DELFT3D	Precipitation	0.11° nominal from	3 hours
	marine ecosystem	including NPZD	Temperature (air)	CORDEX runs	
			boundary conditions for the local ocean model		
	state of the main	hydro + NPZD locally developed	Temperature		
Curonian Lagoon	trophic levels in the		Precipitation	0.11° nominal from	3 hours
	lagoon ecosystem	+ ECOSIM	boundary conditions for the local ocean model	CORDEX runs	J Hours
	reindeer population		Precipitation	1 km obtained by	
Hardanger vidda	dynamics; vegetation dynamics	locally developed models	Temperature	different downscaling methods	daily
			Snow cover	0.11°	
	Alpine grassland	locally developed models + soil models	Precipitation	250 meters from	daily
Gran Paradiso	dynamics, ungulate		Temperature	downscaling temperature and precipitation	
	population dynamics		Snow cover		
	State of the alpine	locally developed NPZD models	Precipitation	250 meters from	daily
Gran Paradiso			Temperature	downscaling	
	lake ecosystems		Snow cover	temperature and precipitation	
	· · · · · ·	5.	· · · · · · · · · · · · · · · · · · ·	90 meters obtained by	
Com Dens Pres	spatial biodiversity	locally developed	T	downscaling e-Obs	daily and/or
Gran Paradiso	distribution	model	Temperature	from 2006 and/or future scenarios from	climatology
				WorldClim	
	biomass distribution;	correlation models	Temperature		
Kruger	animal distribution;		Precipitation	0.11°	daily
	fires		Wind		
	small-scale		Temperature	5 meters	hourly
Negev	dynamics and interaction between	LPJmL		downscaling with the meteo version, active	
THEE	geomorph. and	EcoHyd	Precipitation		
	vegetation			only when it rains	

Global climate and environmental change scenarios

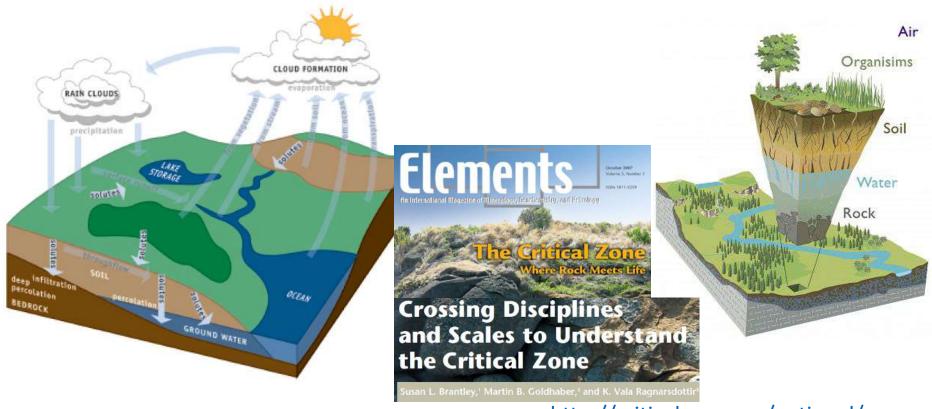
Ecosystem

models

Ecosystem response and change

"Decision-scaling approach"

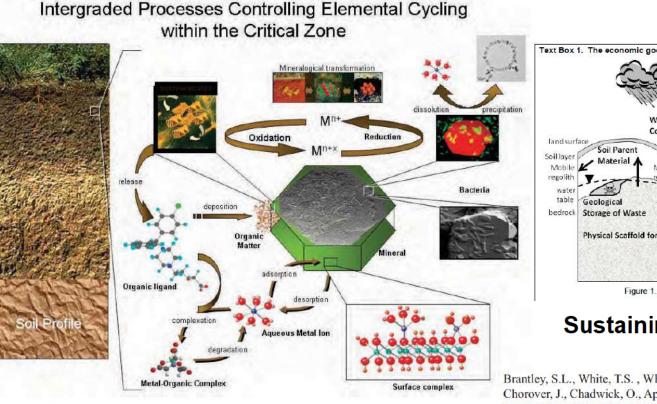
Le Roy Poff et al, Nature Climate Change 2016


Eco-hydro models *

Ecosystem "parameter" sensitivity

* How to test a eco-hydro model?...

Global climate and environmental change scenarios


The Earth Living Skin (aka the Earth Critical Zone)

www.czen.org , http://criticalzone.org/national/

The layer between the top of vegetation canopy and the "rocky matrix", where physics, chemistry, hydrology, eco-hydrology, geology and biology closely interact

The Earth Living Skin (aka the Earth Critical Zone)

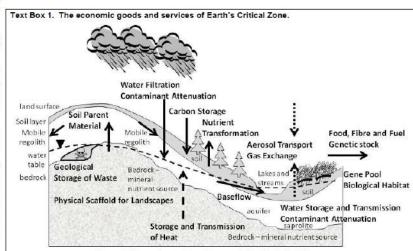


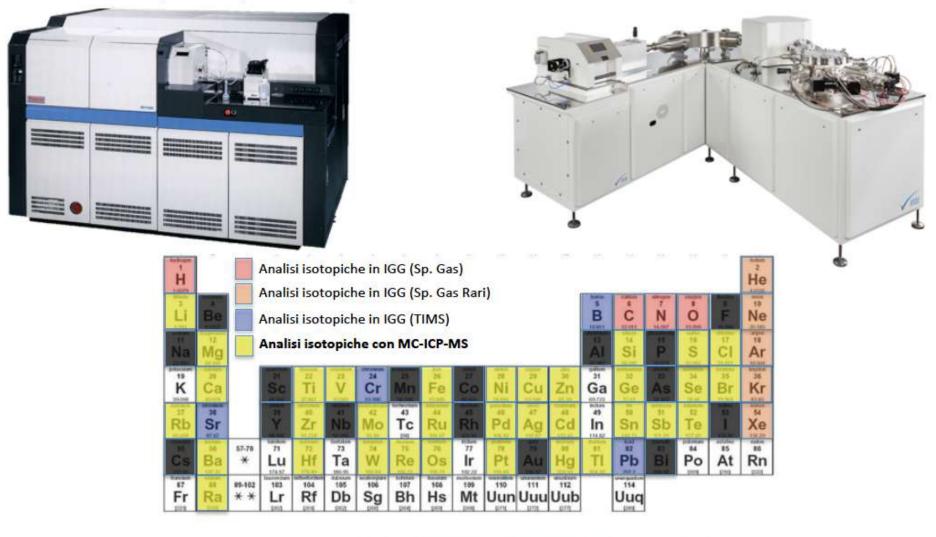
Figure 1. Flows of material and energy in Earth's Critical Zone.

Sustaining Earth's Critical Zone


Brantley, S.L., White, T.S., White, A.F., Sparks, D., Richter, D., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O., April, R., Anderson, S., Amundson, R., 2006, Frontiers in Exploration of the Critical Zone: Report of a workshop sponsored by the National Science Foundation (NSF), October 24-26, 2005, Newark, DE, 30p.

Biogeochemical cycling Hydrological cycle Weathering

Studies of the ECZ at GPNP


This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

ECRA General Assembly, 7-8 March 2017, Bruxelles, Belgium

Ce Êr *Lanthanide series \$7 61 60 Nd Pm Tm La Sm Eu Bk ^{sis} Cf 100 * * Actinide series \$3 95 96 95 101 102 Es Np Fm Md No Am Cm

ECOPOTENTIAL contribution to GEO/GEOSS:

GEO ECO – the GEO Global Ecosystem Initiative: Extend the ECOPOTENTIAL approach at global level (in particular: long-term changes in Pas) Telecon on 21 April 2017

Creation of a

GEO Ecosystem Community of Practice:

Thanks for your attention

