

Geosphere-biosphere-hydrosphere interactions in the earth critical zone

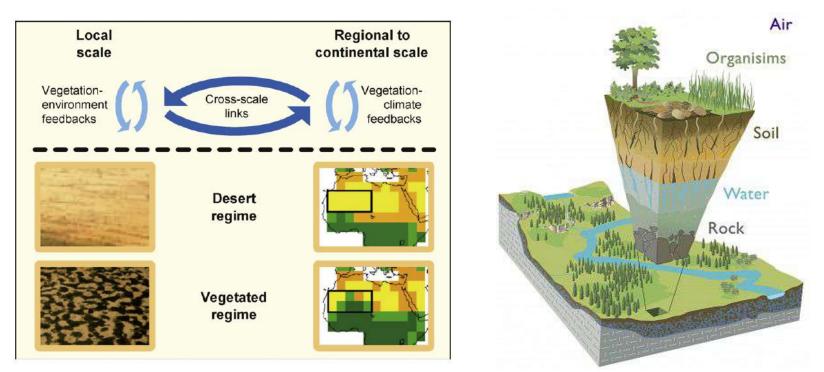
lessons from European Protected Areas and the H2020 ECOPOTENTIAL project

Antonello Provenzale Institute of Geosciences and Earth Resources, Pisa National Research Council of Italy

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641762

GBH interactions: "back to the future"

Ecosystems are seen as "one physical system" with their environment, with strong geosphere-biosphere-hydrosphere interactions



This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

The Earth Living Skin (aka the Earth Critical Zone)

The layer between the top of vegetation canopy and the "rocky matrix", where physics, chemistry, hydrology, geology and biology interact closely

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

ECOPOTENTIAL: Improving future ecosystem benefits through Earth Observations Starting date: 1st June 2015, Duration: 4 years, 47 partners Coordinator: Antonello Provenzale Institute of Geosciences and Earth Resources, National Research Council of Italy Co-Coordinator: Carl Beierkuhnlein **Biogeography, BayCEER, University of Bayreuth, Germany** Project Manager: Carmela Marangi Institute of Applied Mathematics, National Research Council of Italy **External Communication Officer: Mariasilvia Giamberini** Institute of Geosciences and Earth Resources, National Research Council of Italy

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

ECOPOTENTIAL in a nutshell

- Focus on a network of Protected Areas
- Identify relevant ecosystem services and focus on supporting ecosystem functions/processes
- Build EO data products to characterize ecosystems state and changes
- Collect existing in-situ data and identify data gaps
- Quantify changes in the ecosystems
- Build models capable of assimilating EO and in-situ data, capable to include uncertainty estimates
- Estimate the future state of ecosystems

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

ECOPOTENTIAL in a nutshell

- Build knowledge with relevant stakeholders: PA staff, environmental managers, etc
- Define policy options and the requirements of future protected areas
- Make all results available to the community, contributing to GEO/GEOSS (GEO ECO, GNOME) through a Virtual Laboratory Platform
- Produce dissemination material at multiple levels
- Develop a pan-European view starting from the information gained at PA level

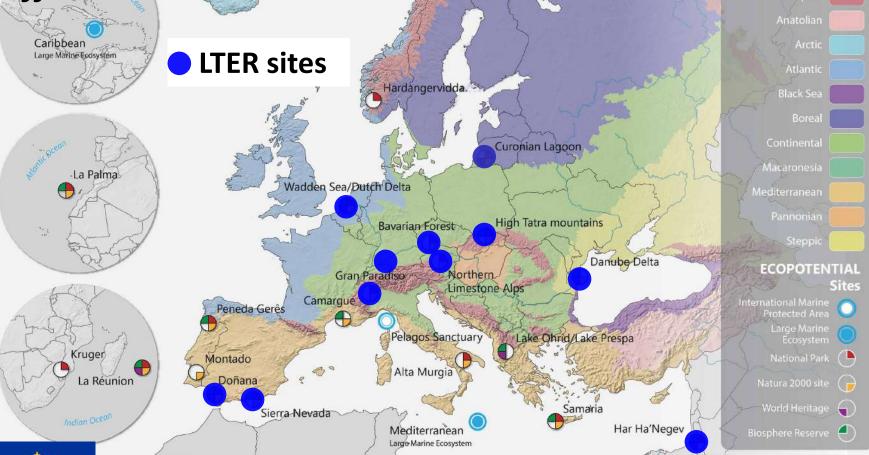
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641762

the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.

Working in partnership with 23 Protected Areas in Europe and beyond

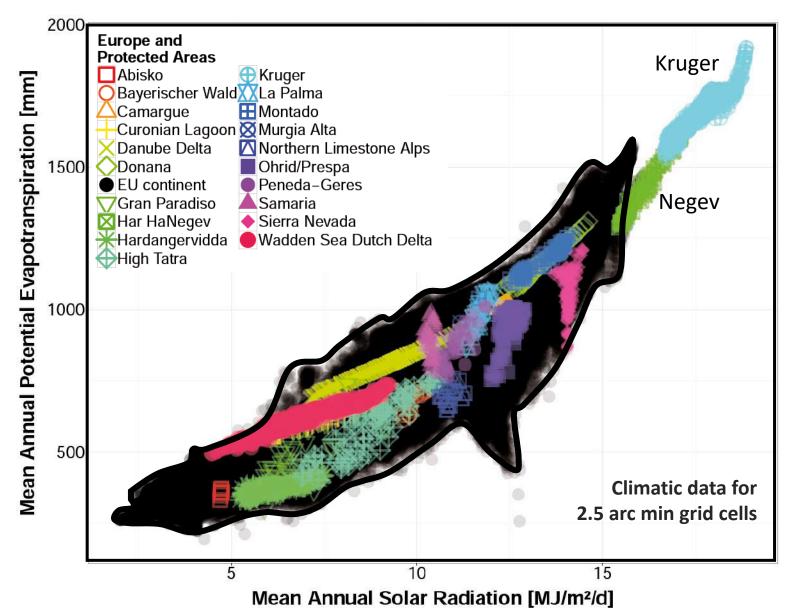
Union's Horizon 2020 research and innovation programme under grant agreement No 641762


the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.

Regions

Working in partnership with 23 Protected Areas in Europe and beyond Co-location and joint use of LTER sites by Biogeographic



This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

ECOPOTENTIAL and climate

Geo-bio-hydro interactions in PAs

Geo-bio-hydro interactions in PAs

Geo-bio-hydro interactions in PAs

Negev Desert, Israel

Photos C Beierkuhnlein, A Provenzale

What do we study in the Protected Areas:

Current state of Protected Areas from Remote Sensing

Ongoing changes in the ecosystems and environment of the ECOPOTENTIAL Protected Areas

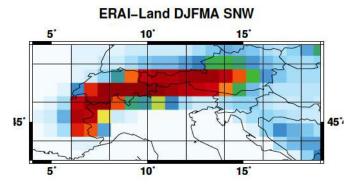
Future projections on the state of the ecosystem in the ECOPOTENTIAL Protected Areas

Narratives related to stakeholder needs: The Storylines

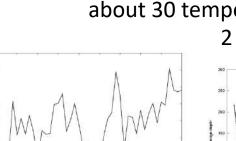
This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

An emerging thread: ongoing changes in PAs **Meteo-climatic drivers** from gridded and local data LC/LU, vegetation, turbidity, chlorophyll-a and other info from Remote Sensing In situ data on ecology/biology/pop.dyn./geomorphology/hydrolog y/water

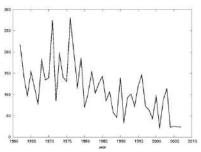
This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762


Example of PA changes: the Gran Paradiso National Park

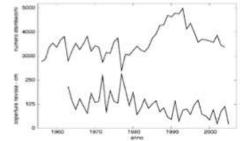
Gridded meteo-climatic datasets

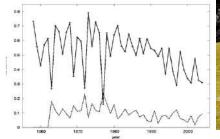

E-OBS: 0.25°, EURO4M: 0.05° (only prec) HISTALP, OI (Piedmont): 0125°

Model outputs and reanalyses


CMIP5, EURO-CORDEX, ERA-Interim/Land and 20CRv2, MERRA, NCEP

Satellite products e.g. snow: Global SWE, AMSR-E vegetation, NDVI, LC/LU


Local meteo-climatic datasets about 30 temperature sensors 2 meteo stations



Water/carbon fluxes and phenology

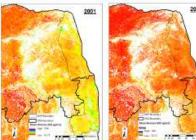
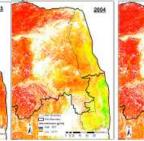
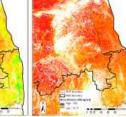
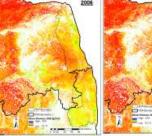
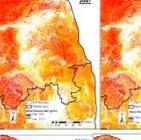
- eddy covariance
- flux chambers

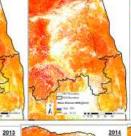
Ecosystem and population dynamics ibex, chamois, vegetation, biodiversity

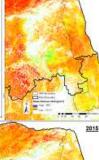
This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

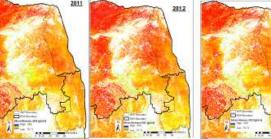
Spatial-temporal dynamics of savanna ecosystems a life support system to wildlife and livestock production in and around Kruger National Park (A. Ramoelo, CSIR)

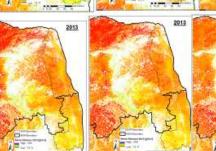
SoE	Indicator	Method [reference] (type)*				
Distribution of grazing and browsing resources in the semi-arid	amount of grass per unit area (biomass)	empirical techniques [Ramoelo et al. 2015] (M)				
environments	percentage of nutrients in dry matter (leaf N (%))	empirical techniques [Ramoelo et al. 2012; 2015] (M)				
	percentage of tree cover per unit area (%)	field, LiDAR and SAR empirical techniques [Mathieu et al. 2013, Naidoo et al. 2014, Urbazaev et al. 2015] (M)				
	above ground woody biomass per unit area (ha) & woody volume as biomass proxy	field, LiDAR and SAR empirical techniques [Mathieu et al. 2013, Naidoo et al. 2014] (M)				

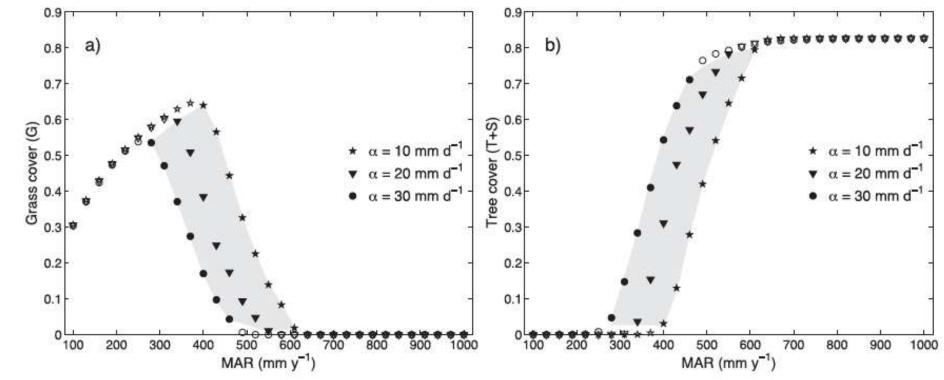







Figure 2: Time series of mean annual biomass data based on 500m spatial resolution MODIS data (2001 -2015).









This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641762

Spatial-temporal dynamics of savanna ecosystems a life support system to wildlife and livestock production in and around Kruger National Park (A. Ramoelo, CSIR)

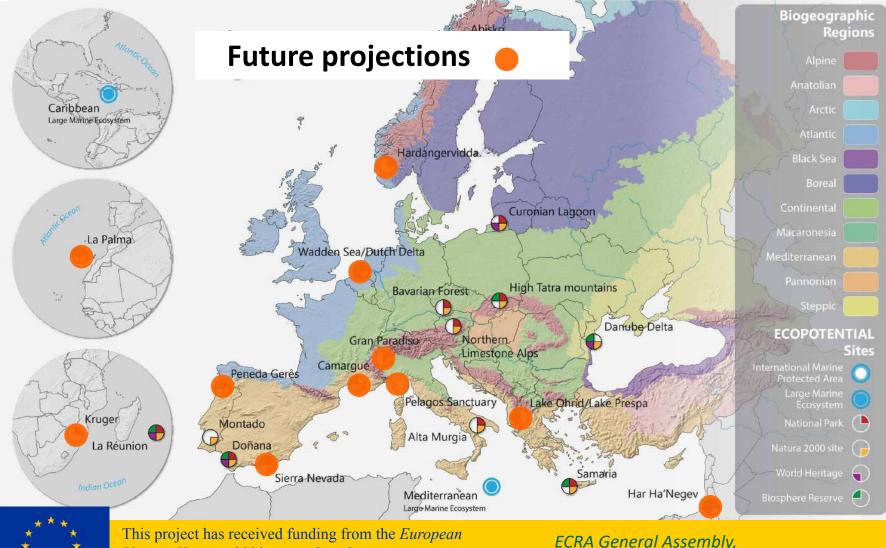
Effects of rainfall intermittency on model savanna dynamics

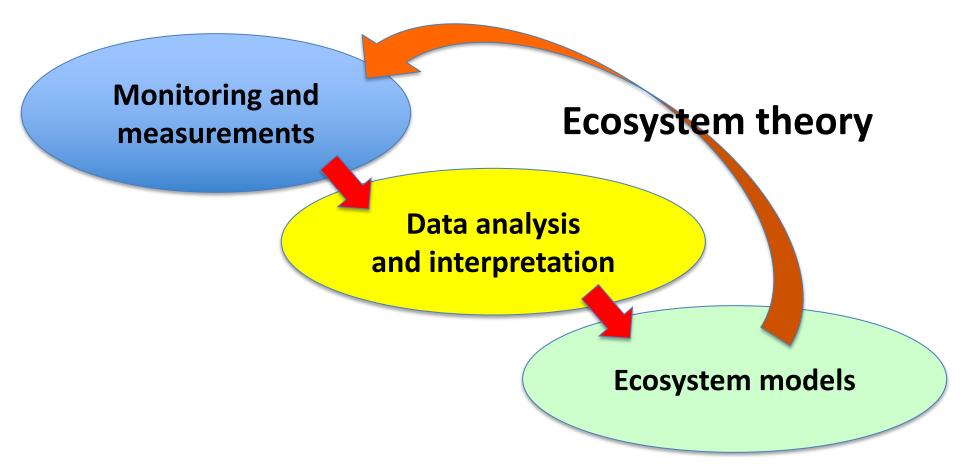
Tree-grass competition for soil water in arid and semiarid savannas: The role of rainfall intermittency

Donatella D'Onofrio^{1,2}, Mara Baudena³, Fabio D'Andrea⁴, Max Rietkerk³, and Antonello Provenzale²

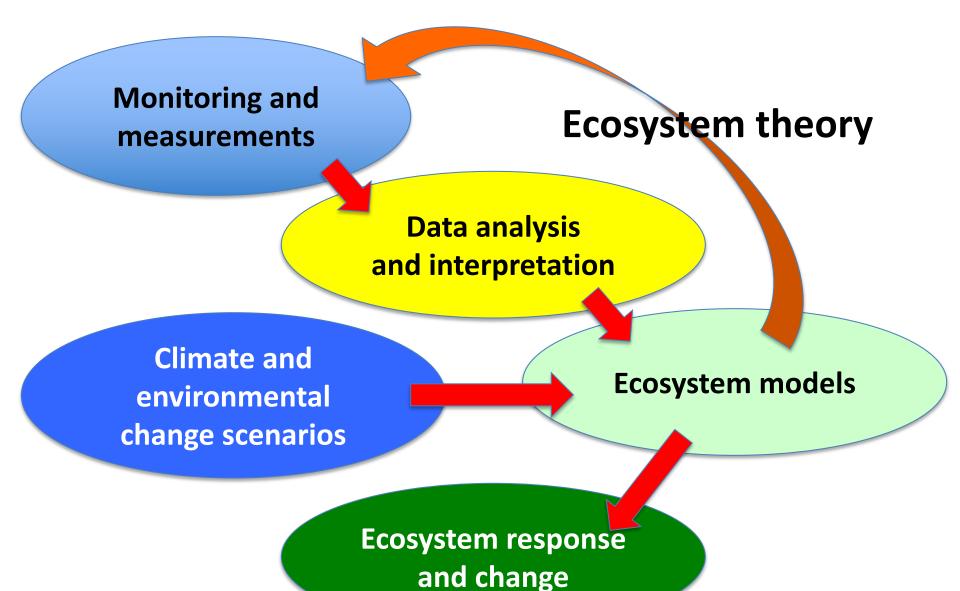
Water Resources Research

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762




the European Union

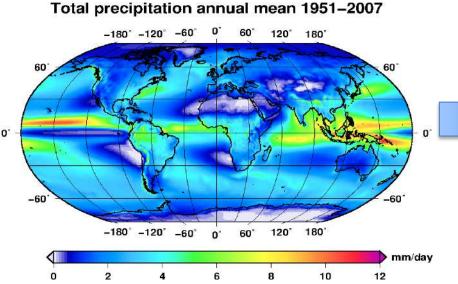
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 641762. Copyright by Ecopotential Consortium.


Working in partnership with 23 Protected Areas in Europe and beyond

Union's Horizon 2020 research and innovation programme under grant agreement No 641762

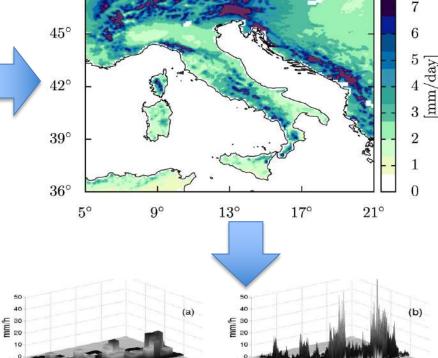
How do we address prediction of ecosystem response to global change?

Global climate and environmental change scenarios


Ecosystem

models

Ecosystem response and change


Scale mismatch: the downscaling-impact chain GLOBAL CLIMATE MODEL REGIONAL CLIMATE MODELS

 48°

ECO-HYDROLOGICAL MODELS

8

448

322

²²⁴ km

112

FIG. 10. (a) A snapshot of the forecasted rain field obtained from the LAM forecast and (b) one example of a downscaled field obtained by application of the RainFARM. The vertical scale indicates precipitation intensity (mm h^{-1}) and it is the same for the two fields.

322

²²⁴ km

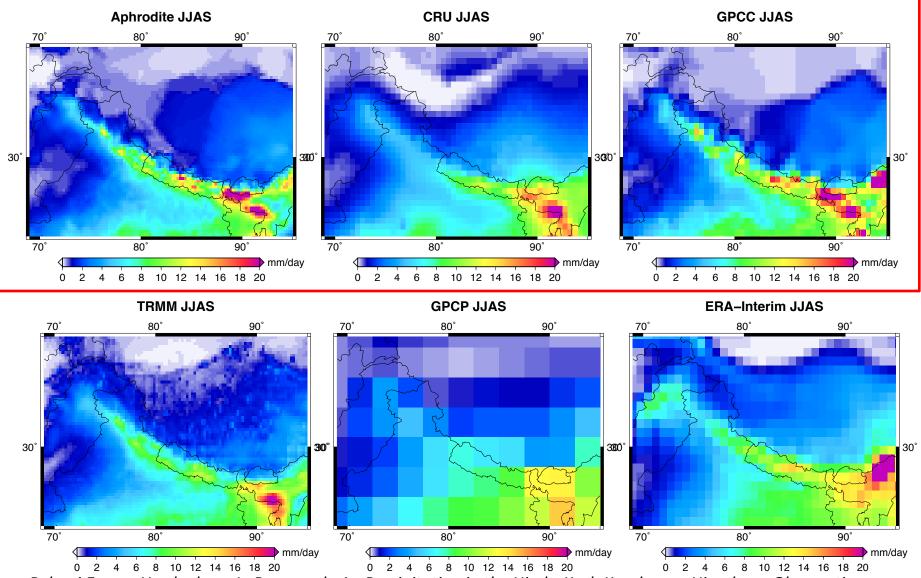
112

448 336

km 224

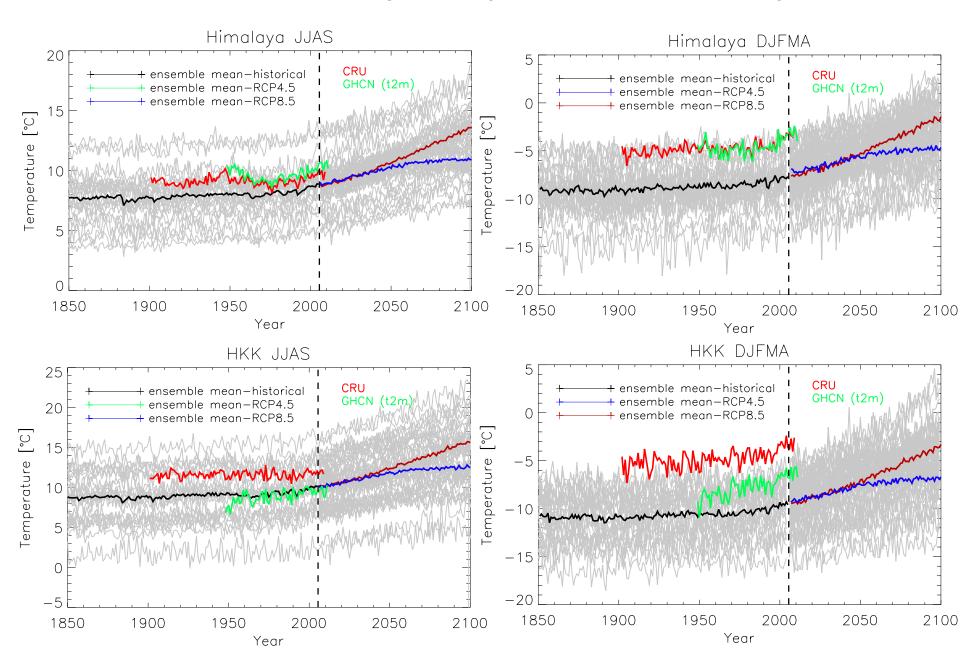
112

STOCHASTIC / STATISTICAL DOWNSCALING

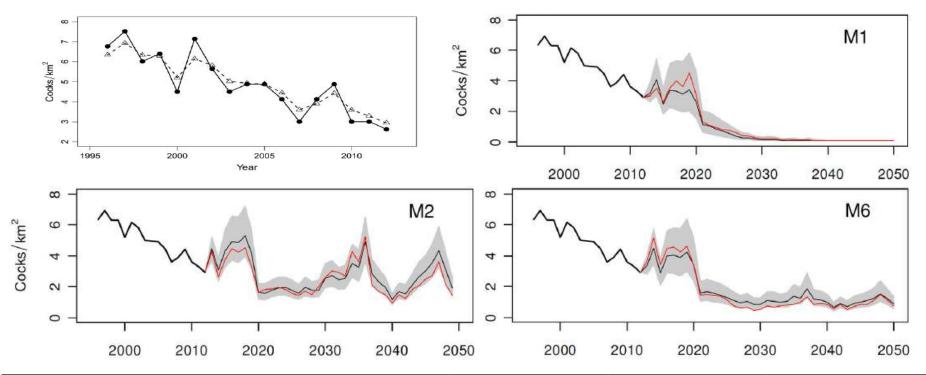

336

km 224

112


Troubles, oh troubles

The chain of uncertainties: data for model validation Summer precipitation (JJAS), Multiannual average 1998-2007


Palazzi E., von Hardenberg J., Provenzale A.: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios, JGR 2013

Sources of uncertainty: the spread of CMIP5 temperatures

Statistical uncertainties in ecological models

Model	Intercept	InN _{t-1}	InN _{t-2}	SE _{t-1}	SS _{t-1}	SPt	T(July) _{t-1}	P(July) _{t-1}	T(Jan-Mar) _t	T(Apr-May) _t	vai	r. R ²	AICc
M1	-0.07±0.04			-0.19±0.04	-0.18±0.04						2	0.78	-50.53
M2	0.34±0.24		-0.25±0.14	-0.19±0.04	-0.19±0.04						3	0.83	-50.20
M3	-0.07±0.04			-0.19±0.04	-0.18±0.04			0.05±0.03			3	0.82	-49.28
M4	-0.07±0.04			-0.19±0.04	-0.17±0.04		-0.05±0.04				3	0.81	-48.51
M5	-0.07±0.04			-0.20±0.04	-0.18±0.04				-0.03±0.04		3	0.79	-47.28
M6	0.08±0.26	-0.10±0.16		-0.18±0.04	-0.17±0.04						3	0.78	-46.98

Simona Imperio, Radames Bionda, Ramona Viterbi, Antonello Provenzale, **Alpine Rock Ptarmigan**, PLOS One, 2013

"Decision-scaling approach"

Le Roy Poff et al, Nature Climate Change 2016

Eco-hydro models *

Ecosystem "parameter" sensitivity

* How to test a eco-hydro model?...

Global climate and environmental change scenarios

Thanks for your attention

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762