

Temporal trend analysis of vegetation cover response to environmental factors and residential development Har-HaNegev, Israel

Noa Ohana-Levi, Tarin Paz-Kagan, Natalya Panov, Aviva Peeters, Asaf Tsoar, Yehoshua Shkedy, Arnon Karnieli

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641762

IV ECOPOTENTIAL General Meeting, Rome, Italy 20-24 May 2019 Why was Har-HaNegev selected?

This area includes a national park, the UNESCO World Heritage Incense Route, and national reserves.

Objective - to assess the impacts of environmental factors and populated areas on vegetation cover change through a multidecadal time period in a dryland area that includes protected nature reserves.

Backgrou	ind C	Objective S	ethodology Study site	Results	Conclusions
			•		

13 Agricultural settlements

Kibbutz and Community Settlement

Individual family farm

10 villages with intensive grazing activity

Analysis of environmental and human-derived covariates effect on vegetation cover change

Background

Boosted regression trees

- 50,000 random points
- Only significant Z-score point considered (=12,788)
- Getis-Ord Gi* for hotspot analysis
- Geographically weighted regression between the hotspots and elevation and distance from streams

Results

Relative influence

of environmental

covariates

Conclusions

Residential effects

in various

distances

CMK test

Z-score

Spatial analysis

Relative influence of environmental and human-induced covariates on vegetation cover change

Objective

Background

Methodology

Relative Influence (%)

GWR VCC ~ distance from streams $R^2 = 0.98$

Methodology

Results

Conclusions

Livestock settlements to Har HaNegev ratio difference
Government facilities to Har HaNegev ratio difference

Differences between settlement types for each distance

Distance from centroid (m)	Agricultural settlements	Livestock settlements	Government facilities
100	а	а	b
200	а	а	b
500	а	b	с
1000	а	b	с
1500	а	b	с
3000	а	b	a
4500	а	b	a

Differences between distances for each settlement type

Settlement type	100 m	200 m	500 m	1000 m	1500 m	3000 m	4500 m
Agricultural	а	а	b	bc	d	d	d
settlements							
Livestock settlements	а	а	b	cd	d	d	с
Government facilities	а	а	а	а	а	а	а

Background

Objective

Methodology

Results

Conclusions

Sum of relative influence of predictors that may change due to future development - **38.31%**

Methodology

Conclusions

Background

- The settlement type affects patterns of VCC.
- Environmental covariates with strongest effect elevation and slope.

Objective

- Vegetation cover is most sensitive along streams.
- Protected areas have a great potential in preserving and increasing vegetation cover.
- Management strategies should be implemented to initiate further conservation and restoration processes.
- Governmental and municipal regulations are required before population increases and degradation processes expand further.
- Negative VCC in drylands have irreversible effects influencing the vegetation pattern and organization in space, altering the ecosystem structure and function.

Thank you for your attention